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Abstract. A large amount of publicly available Web pages are gener-
ated dynamically upon request, and contain links to other dynamically
generated pages. This usually produces Web sites which can create arbi-
trarily many pages. In this article, several probabilistic models for brows-
ing “infinite” Web sites are proposed and studied. We use these models
to estimate how deep a crawler must go to download a significant portion
of the Web site content that is actually visited. The proposed models are
validated against real data on page views in several Web sites, showing
that, in both theory and practice, a crawler needs to download just a few
levels, no more than 3 to 5 “clicks” away from the start page, to reach
90% of the pages that users actually visit.

1 Introduction

Most studies about the web refer only to the “publicly indexable portion”, ex-
cluding a portion of the web that has been called “the hidden web” [1] and is
characterized as all the pages that normal users could eventually access, but
automated agents such as the crawlers used by search engines do not. Certain
pages are not indexable because they require special authorization. Others are
dynamic pages, generated after the request has been made. Many dynamic
pages are indexable, as the parameters for creating them can be found by fol-
lowing links. This is the case of, e.g. typical product catalogs in Web stores, in
which there are links to navigate the catalog without the user having to pose a
query.

The amount of information in the Web is certainly finite, but when a dynamic
page leads to another dynamic page, the number of pages can be potentially

infinite. Take, for example, a dynamic page which implements a calendar; you
can always click on “next month” and from some point over there will be no more
data items in the calendar; humans can be reasonably sure that it is very unlikely
to find events scheduled 50 years in advance, but a crawler can not. There are
many more examples of “crawler traps” that involve loops and/or near-duplicates
(which can be detected afterwards, but we want to avoid downloading them).

In this work, we deal with the problem of capturing a relevant portion of
the dynamically generated content with known parameters, while avoiding the
download of too many pages. We are interested in knowing if a user will ever



see a dynamically generated page. If the probability is too low, would a search
engine like to retrieve that page? Clearly, from the Web site point of view the
answer is yes, but perhaps from the search engine’s point of view, the answer is
no. In that case, our results are even more relevant. The answer in the case of
the user’s point of view is not clear a priori, as will depend on the result.

The main contributions of this paper are the models we propose for random
surfing inside a Web site when the number of pages is unbounded. To do that,
we take the tree induced by the Web graph of a site, and study it by levels. We
analyze these models, focusing on the question of how “deep” users go inside
a Web site and we validate these models using actual data from Web sites and
link analysis with Pagerank. Our results help to decide when a crawler should
stop, and to evaluate how much and how important are the non-crawled pages.

The next section outlines prior work on this topic, and the rest of this paper
is organized as follows: in section 3, three models of random surfing in dynamic
Web sites are presented and analyzed; in section 4, these models are compared
with actual data from the access log of several Web sites. Section 5 concludes
with some final remarks and recommendations for practical web crawler imple-
mentations.

2 Previous Work

Crawlers are an important component of Web search engines, and as such, their
internals are kept as business secrets. Recent descriptions of Web crawlers in-
clude: Mercator [2], Salticus [3], WIRE [4], a parallel crawler [5] and the general
crawler architecture described by Chakrabarti [6].

Models of random surfers as the one studied by Diligenti et al. [7] have been
used for page ranking using the Pagerank algorithm [8], and for sampling the
web [9]. Other studies about Web crawling have focused in crawling policies to
capture high-quality pages [10] or to keep the search engine’s copy of the Web
up-to-date [11]. Link analysis on the Web is currently a very active research
topic; for a concise summary of techniques, see a survey by Henzinger [12].

Log file analysis has a number of restrictions arising from the implementation
of HTTP, specially caching and proxies, as noted by Haigh and Megarity [13].
Caching implies that re-visiting a page is not always recorded, and re-visiting
pages is a common action, and can account for more than 50% of the activity
of users, when measuring it directly in the browser [14]. Proxies implies that
several users can be accessing a Web site from the same IP address. To process
log file data, careful data preparation must be done [15], including the detection
of sessions from automated agents [16].

The visits to a Web site have been modeled as a sequence of decisions by
Huberman et. al [17, 18]; they obtain a model for the number of clicks that follows
a Zipf’s law. Levene et al. [19] proposed to use an absorbing state to represent
the user leaving the Web site, and analyzed the lengths of user sessions when
the probability of following a link increases with session length. Lukose and
Huberman [20] also present an analysis of the Markov chain model of a user



clicking through a Web site, and focus in designing an algorithm for automatic
browsing, which is also the topic of a recent work by Liu et al. [21].

3 Random Surfer Models for a Web site with Infinite

Number of Pages

We will consider a Web site as a set of pages under the same host name, and
a user session as a finite sequence of page views in this Web site. The starting
point of a user session does not need to be the page located at the root directory
of the server, as some users may enter to the Web site following a link to an
internal page.

The page depth of a page in a session is the shortest path from the start
page through the pages seen during a session. This is not only a function of the
Web site structure, this is the perceived depth during a particular session. The
session depth is the maximum depth of a page in a session.

For random surfing, we can model each page as a state in a system, and each
hyperlink as a possible transition; or we can use a simpler model in which we
collapse multiple pages at the same level as a single node, as shown in Figure 1
(left and center). That is, the Web site graph is collapsed to a sequential list.

Fig. 1. Left: a Web site modeled as a tree. Center: the Web site modeled as a sequence
of levels. Right: Representation of the different actions of the random surfer.

At each step of the walk, the surfer can perform one of the following actions,
which we consider as atomic: go to the next level (action next), go back to the
previous level (action back), stay in the same level (action stay), go to a different
previous level (action prev), go to a different higher level (action fwd), go to the
start page (action start) or jump outside the Web site (action jump). For action
jump we add an extra node EXIT to signal the end of a user session (closing the
browser, or going to a different Web site) as shown in Figure 1 (right). Regarding
this Web site, after leaving, users have only one option: start again in a page
with depth 0 (action start).

As this node EXIT has a single out-going link with probability 1, it does not
affect the results for the other nodes if we remove the node EXIT and change this



by transitions going to the start level L0. Another way to understand it is that
as this process has no memory, going back to the start page or starting a new
session are equivalent, so actions jump and start are indistinguishable in terms
of the resulting probability distribution for the other nodes. The set of atomic
actions is A = {next, start/jump, back, stay, prev, fwd}.

The probability of an action at level ` is Pr(action|`). As they are probabili-
ties

∑

action∈A Pr(action|`) = 1. The probability distribution of being at a level
at a given time is the vector x(t) = (x0, x1, . . . ). When there exists a limit, we
will call this limt→∞ x(t) = x.

In this article, we study three models with Pr(next|`) = q ∀`, i.e.: the prob-
ability of advancing to the next level is constant for all levels. Our purpose is
to predict how far will a real user go into a dynamically generated Web site. If
we know that, e.g.: x0 + x1 + x2 ≥ 90%, then the crawler could decide to crawl
just those three levels. The models we analyze were chosen to be as simple and
intuitive as possible, though without sacrificing correctness. We seek more than
just fitting the distribution of user clicks, we want to understand and explain

user behavior in terms of simple operations.

3.1 Model A: back one level at a time

In this model, with probability q the user will advance deeper, and with proba-
bility 1 − q the user will go back one level, as shown in Figure 2.

Pr(next|`) = q
Pr(back|`) = 1 − q for ` ≥ 1
Pr(stay|`) = 1 − q for ` = 0
Pr(start, jump|`) = 0
Pr(prev|`) = Pr(fwd|`) = 0

Fig. 2. Model A, the user can go forward or backward one level at a time.

A stable state x is characterized by
∑

i≥0
xi = 1 and:

xi = qxi−1 + (1 − q)xi+1 (∀i ≥ 1)

x0 = (1 − q)x0 + (1 − q)x1

The solution to this recurrence is: xi = x0

(

q
1−q

)i

(∀i ≥ 1).

If q ≥ 1/2 then we have the solution xi = 0, and x∞ = 1 (that is, we have an
absorbing state); which in our framework means that no depth can ensure that
a certain proportion of pages have been visited by the users. When q < 1/2 and
we impose the normalization constraint, we have a geometric distribution:

xi =

(

1 − 2q

1 − q

)(

q

1 − q

)i



The cumulative probability of levels 0 . . . k is:

k
∑

i=0

xi = 1 −

(

q

1 − q

)k+1

3.2 Model B: back to the first level

In this model, the user will go back to the start page of the session with proba-
bility 1 − q. This is shown in Figure 3.

Pr(next|`) = q
Pr(back|`) = 1 − q if ` = 1, 0 otherwise.
Pr(stay|`) = 1 − q for ` = 0
Pr(start, jump|`) = 1 − q for ` ≥ 2
Pr(prev|`) = Pr(fwd|`) = 0.

Fig. 3. Model B, the user can go forward one level at a time, or she/he can go back to
the first level either by going to the start page, or by starting a new session.

A stable state x is characterized by
∑

i≥0
xi = 1 and:

x0 = (1 − q)
∑

i≥0

xi = (1 − q)

xi = qxi−1 (∀i ≥ 1)

As we have q < 1 we have another geometric distribution: xi = (1 − q)qi.

The cumulative probability of levels 0 . . . k is:
∑k

i=0
xi = 1 − qk+1.

Note that the cumulative distribution obtained with model A (“back one
level”) using parameter qA, and model B (“back to home”) using parameter qB

are equivalent if: qA = qB

1+qB

. So, as the distribution of session depths is equal,
except for a transformation in the parameter q, we will consider only model B
for charting and fitting the distributions.

3.3 Model C: back to any previous level

In this model, the user can either discover a new level with probability q, or go
back to a previous visited level with probability 1 − q. If he decides to go back
to a previously seen level, he will choose uniformly from he set of visited levels
(including the current one), as shown in Figure 4.

A stable state x is characterized by
∑

i≥0
xi = 1 and:

x0 = (1 − q)
∑

k≥0

xk

k + 1

xi = qxi−1 + (1 − q)
∑

k≥i

xk

k + 1
(∀i > 1)



Pr(next|`) = q
Pr(back|`) = 1 − q/(` + 1), ` ≥ 1
Pr(stay|`) = 1 − q/(` + 1)
Pr(start, jump|`) = 1 − q/(` + 1),

` ≥ 2
Pr(prev|`) = 1 − q/(` + 1), ` ≥ 3
Pr(fwd|`) = 0.

Fig. 4. Model C: the user can go forward one level at a time, and can go back to
previous levels with uniform probability.

We can take a solution of the form: xi = x0 (i + 1) qi. Imposing the normaliza-

tion constraint, this yields: xi = (1 − q)
2
(i + 1) qi. The cumulative probability

of levels 0 . . . k is:
∑k

i=0
xi = 1 − (2 + k − (k + 1) q) qk+1.

3.4 Comparison of the Models

In terms of the cumulative probability of visiting the different levels, models A
and B produce equivalent results except for a transformation of the parameters.
Plotting the cumulative distributions for models B and C yields Figure 5. We
can see that if q ≤ 0.4, then in these models there is no need for the crawler to
go past depth 3 or 4 to capture more than 90% of the pages a random surfer
will actually visit, and if q is larger, say, 0.6, then the crawler must go to depth
6 or 7 to capture this amount of page views.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  1  2  3  4  5  6  7  8

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Level

q=0.1
q=0.2
q=0.3
q=0.4
q=0.5
q=0.6
q=0.7
q=0.8
q=0.9

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  1  2  3  4  5  6  7  8

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Level

q=0.1
q=0.2
q=0.3
q=0.4
q=0.5
q=0.6
q=0.7
q=0.8
q=0.9

Fig. 5. Cumulative probabilities for models B (left) and C (right)

4 Data from user sessions in Web sites

We studied real user sessions on 13 different Web sites in the US, Spain, Italy
and Chile, including commercial, educational, non-governmental organizations



Collection Fit

Code Type Country Recorded Average Root Best q Error
sessions page views entry model

E1 Educational Chile 5,500 2.26 84% B 0.51 0.88%
E2 Educational Spain 3,600 2.82 68% B 0.51 2.29%
E3 Educational US 71,300 3.10 42% B 0.64 0.72%

C1 Commercial Chile 12,500 2.85 38% B 0.55 0.39%
C2 Commercial Chile 9,600 2.09 32% B 0.62 5.17%

R1 Reference Chile 36,700 2.08 11% B 0.54 2.96%
R2 Reference Chile 14,000 2.72 22% B 0.59 2.75%

O1 Organization Italy 10,700 2.93 63% C 0.35 2.27%
O2 Organization US 4,500 2.50 1% B 0.62 2.31%

OB1 Organization + Blog Chile 10,000 3.73 31% B 0.65 2.07%
OB2 Organization + Blog Chile 2,000 5.58 84% B 0.72 0.35%

B1 Blog Chile 1,800 9.72 39% C 0.79 0.88%
B2 Blog Chile 3,800 10.39 21% C 0.63 1.01%

Table 1. Characteristics of the studied Web sites and results of fitting the models.
The number of user sessions does not reflect the relative traffic of the Web sites, as the
data was obtained in different time periods. “Root entry” is the fraction of sessions
starting in the home page.

and Web logs (sites in in which collaborative forums play a major role, also
known as “Blogs”); characteristics of this sample, as well as the results of fitting
models B and C to the data are summarized in Table 1.

We obtained access logs with anonymous IP addresses from these Web sites,
and processed them to obtain user sessions, considering a session as a sequence
of GET requests with the same User-Agent [22] and less than 30 minutes between
requests [23]. We also processed the log files to discard hits to Web applications
such as e-mail or content management systems, as they neither respond to the
logic of page browsing, nor are usually accessible by Web crawlers. We expanded
sessions with missing pages using the Referrer field of the requests, and con-
sidering all frames in a multi-frame page as a single page. Finally, we discarded
sessions by Web robots [16] using known User-Agent fields and accesses to the
/robots.txt file, and we discarded requests searching for buffer overflows or
other software bugs.

As re-visits are not always recorded because of caching [14], data from log
files overestimates the depth at which users spent most of the time. Figure 6
shows the cumulative distribution of visits per page depth to Web sites. At least
80%-95% of the visits occur at depth ≤ 4, and about 50% of the sessions include
only the start page. The average session length is 2 to 3 pages, but in the case
of Web logs, sessions tend to be longer. This is reasonable as Web postings are
very short so Blog users view several of them during one session.

We fitted the models to the data from Web sites, as shown in Table 1 and
Figure 8. In general, the curves produced by model B (and model A) are a better
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approximation to the user sessions than the distribution produced by model C,
except for Blogs. The approximation is good for characterizing session depth,
with error in general lower than 5%.

We also studied the empirical values for the distribution of the different
actions at different levels in the Web site. We averaged this distribution across
all the studied Web sites at different depths. The results are shown in Table 2,
in which we consider all the Web sites except for Blogs.

Level Observations Next Start Jump Back Stay Prev Fwd

0 247985 0.457 – 0.527 – 0.008 – 0.000
1 120482 0.459 – 0.332 0.185 0.017 – 0.000
2 70911 0.462 0.111 0.235 0.171 0.014 – 0.001
3 42311 0.497 0.065 0.186 0.159 0.017 0.069 0.001
4 27129 0.514 0.057 0.157 0.171 0.009 0.088 0.002
5 17544 0.549 0.048 0.138 0.143 0.009 0.108 0.002
6 10296 0.555 0.037 0.133 0.155 0.009 0.106 0.002
7 6326 0.596 0.033 0.135 0.113 0.006 0.113 0.002
8 4200 0.637 0.024 0.104 0.127 0.006 0.096 0.002
9 2782 0.663 0.015 0.108 0.113 0.006 0.089 0.002
10 2089 0.662 0.037 0.084 0.120 0.005 0.086 0.003

Table 2. Average distribution of the different actions in user sessions, without consid-
ering Blogs. Transitions with values greater than 0.1 are shown in bold face.

We can see in Table 2 that the actions next, jump and back are the more
important ones, which is in favor of models A (back one level) and model B



(back to start level). We also note that Pr(next|`) doesn’t vary too much, and
lies between 0.45 and 0.6. It increases as ` grows which is reasonable as a user
that already have seen several pages is more likely to follow a link.

Pr(jump|`) is higher than Pr(back|`) for the first levels, and it is much
higher than Pr(start|`). About half of the user sessions involve only one page
from the Web site. Pr(start|`), Pr(stay|`) and Pr(fwd|`) are not very common
actions.

5 Conclusions

The models and the empirical data presented lead us to the following charac-
terization of user sessions: they can be modeled as a random surfer that either
advances one level with probability q, or leaves the Web site with probability
1− q. In general q ≈ 0.45−0.55 for the first few levels, and then q ≈ 0.65−0.70.
This simplified model is good enough for representing the data for Web sites,
but:

– We could also consider Model A (back one level at a time), which is equiva-
lent in terms of cumulative probability per level, except for a change in the
parameters. Based on the empirical data, we observe that users at first just
leave the Web site while browsing (Model B), but after several clicks, they
are more likely to go back one level (Model A).

– A more complex model could be derived from empirical data, particularly
one that considers that q depends on `. We considered that for our purposes,
which are related to Web crawling, the simple model is good enough.

– Model C appears to be better for Blogs. A similar study to this one, focused
only in the access logs of Blogs seems a reasonable thing to do since Blogs
represent a growing portion of on-line pages.

In all cases, the models and the data show evidence of a distribution of visits
which is strongly biased to the first few levels of the Web site. According to
this distribution, more than 90% of the visits are closer than 4 to 5 clicks away
from the entry page in most of the Web sites. In Blogs, we observed deeper user
sessions, with 90% of the visits within 7 to 8 clicks away from the entry page.

In theory, as internal pages can be starting points, it could be concluded that
Web crawlers must always download entire Web sites. In practice, this is not the
case: if we consider the physical page depth in the directory hierarchy of a Web
site, we observe that the distribution of surfing entry points per level rapidly
decreases, so the overall number of pages to crawl is finite, as shown in Figure 7
(left).

Link analysis, specifically Pagerank, provides more evidence for our conclu-
sions. We asked, what fraction of the total Pagerank score is captured by the
pages on the first ` levels of the Web sites? To answer this, we crawled a large
portion of the Chilean Web (.cl) obtaining around 3 million pages on April 2004,
using 150 thousand seed pages that found 53 thousand Web sites. Figure 7 (right)
shows the cumulative Pagerank score for this sample. Again, the first five levels
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capture 80% of the best pages. Note that the levels in this figure are obtained in
terms of the global Web structure, considering internal and external links, not
user sessions, as in the study by Najork and Wiener [10].

These models and observations could be used by a search engine, and we
expect to do future work in this area. For instance, if the search engine’s crawler
performs a breadth-first crawling and can measure the ratio of new URLs from
a Web site it is adding to its queue vs. seen URLs, then it should be able to infer
how deep to crawl that specific Web site. The work we presented in this article
provides a framework for that kind of adaptivity.

An interesting enhancement of the models shown here is to consider the
contents of the pages to detect duplicates and near-duplicates. In our model,
downloading a duplicate page should be equivalent to going back to the level
at which we visited that page for the first time. A more detailed analysis could
also consider the distribution of terms in Web pages and link text as the user
browses through a Web site.

As the amount of on-line content that people, organizations and business are
willing to publish grows, more Web sites will be built using Web pages that are
dynamically generated, so those pages cannot be ignored by search engines. Our
aim is to generate guidelines to crawl these new, practically infinite, Web sites.
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Fig. 8. Fit of the models to actual data, in terms of cumulative page views per level.
Model B (back to start level), has smaller errors for most Web sites, except for Blogs.
The asymptotic standard error for the fit of this model is 5% in the worst case, and
consistently less than 3% for all the other cases. Note that we have zoomed into the
upper portion of the graph, starting in 50% of cumulative page views.


