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Abstract

This paper studies a family of link-based algorithms that propagate page importance through links.
In these algorithms there is a damping function that decreases with the distance, so a direct link implies
more endorsement than a link through a long path. PageRank is the most widely known ranking function
of this family.

We focus on three damping functions, having linear, exponential, and hyperbolic decay on the lengths
of the paths. The exponential decay corresponds to PageRank, and the other functions are new. Our
analysis includes a comparison among them and experiments for studying their behavior under different
parameters.

1 Introduction

One of the measures of importance of a scientific paper is the number of citations that the article receives.
Following this idea, several authors proposed to use links for ranking web pages [28, 20, 26]; however, it
quickly become clear that just counting the links was not a very reliable measure of authoritativeness (it
was not in scientific citations either), because it is very easy to manipulate in the context of the web, where
creating a page costs nearly nothing.

The PageRank technique, introduced by Pageet al. [30], actually tries to mend this problem by looking
at the importance of a page in a recursive manner. In other words, “a page with high PageRank is a page
referenced by many pages with high PageRank”: PageRank not only counts the direct links to a page, but
also includes indirect links. The same is valid for scientific citations.

PageRank turns out to be a simple, robust and reliable way to measure the importance of web pages, and
it can be computed in a very efficient way. For these reasons, most of today’s commercial search engines
are believed to use PageRank as an important source of ranking.

In this paper we:

• describe general ranking functions that depend on incoming paths of varying lengths,

• show that PageRank belongs to this class of functions,
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• show how to compute these rankings,

• suggest why 0.85 is a good choice of the parameter for PageRank, and

• compare the ranking orders induced by different ranking functions, finding ways of approximating
PageRank up to very high precision.

The rest of this paper is organized as follows:Section2 introduces the notion of functional ranking,Sec-
tion 3 describes three damping functions;Section4 compares them analytically, andSection5 experiments
with different parameters for each function. Finally,the last sectionpresents our conclusions.

2 Functional Rankings

In this section, we introduce the notion offunctional ranking, a general family of ranking functions that
includes PageRank. To describe PageRank formally, consider a web graph ofN pages. LetAN×N be the
link matrix in this graph,ai, j = 1 iff there is a link from pagei to pagej. This link matrix is seldom used as
it is, mainly for two reasons:

Normalization. In the Web, creating an out-link is free, so there is an incentive for web page authors to
create pages with many out-links; this is the reason why a metaphor of “voting” is enforced [27] in
which each page has only one “vote” that has to be split among its linked pages. This is typically
done in link-based ranking by normalizingA row-wise: the normalization process means that every
web page can only decide how to divide its own score among the pages it leads to, but it cannot assign
more score than it has. Another way to look at normalization is that the matrix is turned into the
transition matrix of a stochastic process.

The normalization does not need to give each out-link the same value, as there is evidence that web
links have different purposes such as navigating in a multi-page set, expanding the contents of the
current page, pointing to another resource, etc. [15]. Also, links within the same site can be consid-
ered self-links and as such do not confer as much authority as a link between different sites; indeed,
there are ranking methods like BHITS [4], or Altavista’s Eigenrank that treat them differently. Other
characteristics of links, such as if they appear at the beginning or the bottom of the page, or if they
appear within a certain HTML element, can also be used for non-uniform normalization [2].

We will assume uniform normalization, so if a page hasd out-links, each of those links has a weight
of 1/d, but the results of this paper can be applied to other forms of normalization.

Dangling nodes.Special attention should be paid to the possible presence of nodes with no outgoing arcs
(also known as “dangling nodes”): in fact, dangling nodes fail to produce a row-stochastic matrix,
because the rows of dangling nodes are filled with zeroes. Dangling nodes can be dealt with by
adding an extra node that is linked to and from all other nodes, or by introducing new arcs from each
dangling node to every node in the graph. In our analysis, we shall assume that all dangling nodes
have been eliminated already in some way, so that we do not have to worry about their presence. All
the algorithms we will present can be modified so that dangling nodes can be dealt with explicitly and
with virtually no additional cost.

Let P be the row-normalized link matrix of the graph withN nodes. PageRankr(α) is defined as the
stationary distribution of the matrix

αP+(1−α)1Tv
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whereα ∈ [0,1) is a parameter calleddamping factor(sometimes also called a dampening factor), andv is
a fixedpreference vectorthat may represent the interests of a particular user, or another ranking vector that
is used for weighting pages. Note that the above matrix is ergodic (at least, if every entry ofv is strictly
positive), so it has exactly one stationary distribution. Even though most of our results can be easily restated
with a non-uniform preference vectorv, for the sake of clarity we shall only consider the uniform preference
1/N in the rest of the paper.

As observed in [6], the PageRank vectorr(α) can be written as:

r(α) = (1−α)
∞

∑
t=0

αt 1
N

1Pt .

Or in matricial form:

r(α) = (1−α)
1
N

1(I −αP)−1 ||αP||< 1

There is an equivalent, and actually very intriguing way of rewriting this formula, mentioned in [29]
that leads to a conclusion similar to those of [8]: given a pathp = 〈x1,x2, . . . ,xk〉 in the graph, we define its
branching contributionas follows

branching(p) =
1

d1d2 · · ·dk−1

whered j is the outdegree, this is, the number of outgoing arcs, of nodex j .
Then, the ranking of nodei according to PageRank is

r i(α) = ∑
p∈Path(−,i)

(1−α)α|p|

N
branching(p)

where Path(−, i) is the set of all paths into nodei and |p| is the length of pathp: this is because(Pt)i j

contains the sum of the branching contributions of all paths of lengtht from i to j, as one can easily show by
induction ont. This way of expressing the PageRank of a node is interesting, because it highlights the fact
that the rank of a node is essentially obtained as a weighted sum of contributions coming from every path
entering into the node, with weights that decay exponentially in the length of the path.

A natural generalization of this idea consists in taking into consideration a rankingR of the general
form:

R =
∞

∑
t=0

damping(t)
1
N

1·Pt

or equivalently

Ri = ∑
p∈Path(−,i)

damping(|p|) 1
N

branching(p)

where the damping function is a suitable choice of weights. We will refer to this form of ranking asfunc-
tional ranking, because it is parametrized by the damping function. As we have seen, generic PageRank is
a functional ranking where the damping function

damping(t) = (1−α)αt

decays exponentially fast.
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3 Damping Functions

In this section, we show several functional rankings by describing their damping functions. First, we show
which class of damping functions generate well-defined functional rankings.

As shown in [8, Corollary 2.4], for every pair of nodesi and j, and for every lengtht

∑
p∈Path(i, j),|p|=t

branching(p)≤ 1.

A more general property holds:

Theorem 1 For every node i and every length t

∑
p∈Path(i,−),|p|=t

branching(p) = 1.

Proof. By induction ont. For t = 0, there is only one path fromi of length 0, and its branching is 1. For
the inductive step,∑p∈Path(i,−),|p|=t+1branching(p) can be rewritten by observing that, ifi has outdegreedi ,
every path fromi of lengtht +1 is the concatenation ofi with a path of lengtht from an out-neighbor ofi:

∑
p∈Path(i,−),|p|=t+1

branching(p) = ∑
j:i→ j

1
di

∑
p∈Path( j,−),|p|=t

branching(p) = ∑
j:i→ j

1
di

= 1.

As a consequence, to guarantee that the functional ranking is well-defined and normalized (i.e., that rank
values sum to 1) we need:

N

∑
i=1

∑
p∈Path(−,i)

damping(|p|) 1
N

branching(p) = 1

that is
∞

∑
t=0

damping(t)
1
N ∑

p∈Path(−,−)
branching(p) = 1.

UsingTheorem1, ∑p∈Path(−,−) branching(p) = N, so the latter equality is equivalent to

∞

∑
t=0

damping(t) = 1.

Hence, every choice of the damping function such that∑∞
t=0damping(t) = 1 yields a well-defined nor-

malized functional ranking. Nonetheless, not all choices are equivalent, so we have to find out which
functions generate better rankings. Since a direct link should be more valuable as a source of evidence than
a distant link, we focus on damping functions that are decreasing ont, the length of the paths.

3.1 Linear damping

Let’s start by considering a simple damping function such as:

damping(t) =

{
2(L−t)
L(L+1) t < L

0 t ≥ L
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this is, a damping function that decreases linearly with distance, and reaches zero at distanceL. The trivial
caseL = 1 gives a uniform ranking, andL = 2 is ranking by indegree, as in the latter case all paths of length
≥ 2 are not considered.

From the definition,

R =
∞

∑
t=0

damping(t)vPt

=
L

∑
t=0

2(L− t)
L(L+1)

vPt

=
2

L(L+1)
v

L−1

∑
t=0

(L− t)Pt

=
2

L(L+1)
v(L(I −P)−P(I −PL))((I −P)2)−1 .

provided that(I −P)2 is not singular.
An advantage of this type of ranking is that only the first few levels are considered, so the computation

is fast and the number of iterations is fixed.

Computation. For computing this functional ranking, we can define the following sequence:

R(0) =
2

L+1
v

R(k+1) =
(L−k−1)

(L−k)
RkP .

The functional ranking with linear damping is∑L−1
k=0 R(k). An algorithm for computing this ranking,

shown inFigure1, arises directly from this summation.

3.2 Exponential damping: PageRank

As we already noted, PageRank can be seen as a functional ranking where the damping function decays
exponentially:

damping(t) = (1−α)αt .

As longer paths have less importance in the calculation of PageRank, it could be approximated by using
only a few levels of links. In [10], it is shown that by using only the nodes at distance 1 from a target
node (equivalent to linear damping withL = 2), PageRank can be approximated with 30% of average error.
Using nodes at distance 2, the average error drops to 20% and at distance 3, to 10%. After that, there are no
significant improvements by adding more levels, and the cost (the number of nodes to be explored) is much
higher.

Computation. Since PageRank is the principal eigenvector of the modified graph matrix, it can be eas-
ily approximated by the iterative Power Method algorithm, as suggested by Pageet al. in their original
paper [30]; this iterative algorithm gives good approximations (both in norm and with respect to the in-
duced node order) in few iterations, even though convergence speed and numerical stability decay when
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Require: L: maximum path length, N: number of nodes,v: preference vector
1: for i : 1 . . . N do {Initialization}
2: S[i] ← R[i] ← 2v[i]/(L+1)
3: end for
4: for step : 1. . . L−1 do {Iteration step}
5: Aux← 0
6: for i : 1 . . . N do {Follow links in the graph}
7: for all j such that there is a link fromi to j do
8: Aux[j] ← Aux[j] + R[i]/outdegree(i)
9: end for

10: end for
11: for i : 1 . . . N do {Add to ranking value}
12: R[i] ← Aux[i] × (L−step)

(L−(step−1))
13: S[i] ← S[i] + R[i]
14: end for
15: end for
16: return R

Figure 1: Algorithm for computing a functional ranking with linear damping.

α gets close to 1 [18, 17]. Other methods to compute PageRank have been proposed, some of them us-
ing techniques for the solution of systems of linear equations, some other concentrating on some specific
features of the web as a graph that determine forms of locality in the computation of PageRank (see, for
example, [30, 16, 13, 25, 22, 21]).

3.3 Quadratic hyperbolic damping: TotalRank

Recently, a ranking method called TotalRank [5] has been proposed. The method aims at eliminating the
necessity for an arbitrary parameter by integrating PageRank over the entire range ofα. If r(α) is the vector
of PageRank, then TotalRank is defined as:

T =
Z 1

0
r(α)dα .

T can be written as:

Z 1

0
r(α)dα =

1
N

∞

∑
t=0

Z 1

0
(1−α)αt1·Ptdα

=
1
N

∞

∑
t=0

1
(t +1)(t +2)

1·Pt

By using the definition of the logarithm of a matrix:

ln(I −P) =−
∞

∑
k=1

Pk

k

we can write TotalRank as:
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T = P−1(I +(I −P−1) ln(I −P))

provided thatP−1 is not singular andP 6= I .
TotalRank is as a weighted sum of the score associated with paths of varying lengths, in which the

weights are hyperbolically decreasing on the lengths of the paths. In other words, TotalRank is a functional
ranking with damping function:

damping(t) =
1

(t +1)(t +2)
,

and it is well defined as∑∞
t=0damping(t) = 1.

Computation. It is known that the cost of calculating TotalRank is the same as the cost of calculating
PageRank via the Power Method [6], even though some more iterations are required to obtain the same
precision.

3.4 General hyperbolic damping: HyperRank

TotalRank is part of a more general family of weighting schemes for paths of different lengths that can be
approximated using:

s(β) =
1

Nζ(β)

∞

∑
t=0

1

(t +1)β 1·Pt .

Again, this way of ranking follows the general scheme, with damping function chosen as

damping(t) =
1

ζ(β)(t +1)β .

Here, we are using Riemann’s zeta function,ζ(β) = ∑∞
t=1

1
tβ for normalization, and we needβ > 1 for it

to converge. Note that whenβ = 2 we get weights similar to those of TotalRank, in which thet-th coefficient
is 1/(t +1)(t +2) whereas here it is 1/ζ(2)(t +1)2.

A meaningful choice forβ should be done considering the distribution of paths of different lengths in a
scale-free graph. A largeα in PageRank, or a smallβ in HyperRank, means increasing the effect of longer
paths in the score.

Computation. Figure2 shows an algorithm for approximating HyperRank. Let us define a vector se-
quenceR(t) as follows:

R(0) =
1

Nζ(β)

R(k+1) =
(

k+1
k+2

)β
R(k)P .

It is easy to see that∑∞
t=0R(k) = s(β), becauseR(k) = 1/(N ·ζ(β)(k+1)β))1·Pk; this observation leads

to the algorithm, Note that convergence speed is much slower than ordinary PageRank, especially whenβ
is close to 1, the norm of thek-th summand being bound by 1/(1+ 1/k)β. Interestingly enough, though,
convergence speed is reasonable ifβ is sufficiently large.
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Require: N: number of nodes,v: preference vector,β: damping parameter
1: for i : 1 . . . N do {Initialization}
2: S[i] ← R[i] ← v[i]/ζ(β)
3: end for
4: k← 0
5: while not convergeddo {Iteration step}
6: k← k + 1
7: Aux← 0
8: for i : 1 . . . N do {Follow links in the graph}
9: for all j such that there is a link fromi to j do

10: Aux[j] ← Aux[j] + R[i]/outdegree(i)
11: end for
12: end for
13: for i : 1 . . . N do {Add to ranking value}
14: R[i] ← Aux[i] ×(k/(k+1))β

15: S[i] ← S[i] + R[i]
16: end for
17: end while
18: return S

Figure 2: An algorithm to compute general hyperbolic rank.

3.5 An empirical damping

An empirical damping function would consider how much the value of an endorsement decreases by fol-
lowing longer paths in the real web graph. This cannot be known exactly, but we can attempt to measure
it indirectly. Pages that link to each other are more similar than pages chosen at random [12]; evidence
from topical crawlers [32] shows that when doing breadth-first exploring, the topic “drifts” as the distance
increases. On the same line of though, we propose to use the decrease of text similarity as an approximation
to an “empirical” damping function.

To find out which is the correlation between link-distance and similarity, we performed the following
experiment: we considered a web graph corresponding to a partial snapshot of the.uk domain, and sampled
200 nodes at random. For each sampled node, we followed links backwards to obtain nodes at a minimum
distance of 1, 2, 3, 4, or 5 links. Then, we sampled 12,000 pairs at each minimum distance at random,
and computed their similarities with the original nodes. Similarity was measured using the normalization of
TF.IDF [3], without stemming nor stopwords removal.

The resulting averages are shown inFigure3, with standard deviation error bars. Text similarity clearly
decreases with distance, and in some applications the empirical distribution of text similarity versus distance
could be used as an “empirical” damping function. Different measures of text similarity can yield different
distributions; for instance [35] uses the number of repeated words and phrases between pages and obtains a
faster decrease in similarity.
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Figure 3: Link distance vs. average text similarity.

4 Comparing Damping Functions

A comparison of the damping functions described in the previous section is shown inFigure4: of course,
hyperbolic damping functions decay asymptotically more slowly than exponential damping, but notice that
for short paths the latter may dominate the former in many cases.
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Figure 4: Weights given by the different damping functions for some values ofα
andβ.

In this section, we aim at analyzing how similar are these functional rankings, and how could we use
one of the damping functions to approximate another with a suitable choice of parameters.
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4.1 Approximating TotalRank with PageRank

It has been shown experimentally that the rank correlation (Kendall’sτ) between TotalRank and PageRank
is maximal whenα≈ 0.7 [5]; the maximum value forτ is over 0.95, meaning that for that specific choice of
α, PageRank and TotalRank induce almost equivalent ranking orders.

We now want to approach the same problem in an analytic fashion; more precisely, we aim at study-
ing the difference between TotalRank and PageRank by calculating the difference between their respective
damping functions:

dampingTotalRank(t) =
1

(t +1)(t +2)
dampingPageRank(α)(t) = (1−α)αt .

As they are normalized, both damping functions have the same summation over the entire range oft.
Our approach is to consider the summation of their differences up to a maximum length for a path. As the
two functions are decreasing, the difference in the first levels makes most of the difference in the rankings.
If ` is the maximum path length we are interested in, we aim at minimizing this sum:

`

∑
t=0

(
1

(t +1)(t +2)
− (1−α)αt

)
= α`+1− 1

`+2
.

The minimum absolute value is 0, and it is obtained whenα is equal to

α∗(`) =
1

`+1
√

`+2
= 1− log`

`
+O

(
log2`

`2

)
.

Figure5 showsα∗(`) as a function of̀ . Recall that for the World-Wide Web graph, the average length
of a path between two nodes, when a path exists, has been estimated in about 16 [9] or 19 [1], but clearly
today is over 20. Now, in the range of path lengths between 15 and 20 the value ofα∗(`) parameters that
minimizes the difference between the exponentially decaying weights of PageRank and the hyperbolically
decaying weights of TotalRank is roughly 0.85.

4.2 Approximating HyperRank with PageRank

Now we want to approximate the weights of:

s(β) =
1

Nζ(β)

∞

∑
t=0

1

(t +1)β Pt

using the weights of:

r(α) =
1−α

N

∞

∑
t=0

αtPt ,

and we proceed again by considering paths up to a certain length:

`

∑
t=0

(
1

ζ(β)(t +1)β − (1−α)αt .

)
The minimum can be zero, and it is attained at:
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Figure 5: Bestα∗(`) for minimizing the difference of the sum of weights between
PageRank and TotalRank.

α∗(`,β) =

√̀
1− 1

ζ(β)

`

∑
t=0

1

(t +1)β .

Theα that minimizes the difference of weights for different values ofβ and of the maximum path lengths
` is shown inFigure6. In the case ofβ = 2, for instance, for path lengths up to 10 to 20, the bestα is between
0.75 and 0.85.
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Figure 6: Bestα for minimizing the difference of the sum of weights between
PageRank and HyperRank with exponentβ, for various path lengths.
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4.3 Approximating PageRank with LinearRank

For approximating the damping function of PageRank with the damping function of LinearRank, we con-
sider the summation of the differences up to a certain path length. If`≤ L:

`

∑
t=0

(
(1−α)αt − 2(L− t)

L(L+1)

)
And if ` > L:

L−1

∑
t=0

(
(1−α)αt − 2(L− t)

L(L+1)

)
+

`

∑
t=L

(1−α)αt

We will assume that̀≤ L, so the evaluation of the difference between the two rankings is done in an area
in which both rankings have non-zero values. TheL that minimizes the difference for a given combination
of α and` is

L∗(α, `) = `+
2`α`+1 +α`+1 +1+

√
(1+α`+1)2 +4`(`+2)α`+1

2(1−α`+1)

= `+1+O
(
`α(`+1)/2

)
and we have plotted it for different values ofα and` in Figure7.
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5 Parameters for the Damping Functions

For our experiments, we used several snapshots from the Web, including the.uk, .it and.eu.int domains.
For comparison, we also considered a synthetic scale-free network produced according to the evolving
model described by Kumaret al. [24] (a combination of preferential attachment and random links) with the
parameters suggested by Panduranganet al. [31]. As far as the latter is concerned, in the generated graph
the exponents for the power-law in the center part of the distributions are -2.1 for in-degree and PageRank,
and -2.7 for out-degree; we generated a 100,000-nodes graph without disconnected nodes.

In this section, we study the behavior of the ranking functions for varying values of their parameters.

5.1 Characteristic path lengths

In scale-free networks, the distances between pairs of nodes follow a Gaussian distribution [1] (the average
is not given in their paper). Analytic estimations for the average distance of a graph of scale-free network
of n nodes include:

• O(log(n)) [34],

• O(log(n)/ log(np)) in sparse graphs withp links [11],

• 1+ log(n/z1)/ log(z2/z1) wherez1 is the average indegree, andz2 is the average number of nodes at
distance 2 [29], and

• O(log(n)/ log(log(n))) [7].

We did the following experiment: starting from a node picked at random, we followed the links back-
wards and counted the number of nodes at different distances.Figure8 plots the average distances found,
which appear to be growing (sub)logarithmically with the size of the graph.Figure9 shows the distribution
obtained in each sample. For this experiment, we are not counting the pages without in-links.
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Figure 8: Average distances versus number of nodes.

If graphs of different sizes show different path lengths, what is the effect of this in the ranking calcu-
lation? Let’s suppose that for a graph withN1 nodes it is found, by experimental or analytic means, that a
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Figure 9: Distribution of the average number of nodes at a certain distance from
a given node.

good parameter for PageRank isα∗1. Now, we would like to have a good parameterα∗2 for a graph with the
same properties, except that the size of the new graph isN2 < N1.

One possible approach, consistent with what we have done so far, is to consider that the sum of the
weights up to the average path lengths of the graphs (L1, L2) have to be similar for both rankings to behave
in a similar way. If we take this approach, the solution is:

1− (α∗1)
L1+1 = 1− (α∗2)

L2+1

α∗2 = (α∗1)
L1+1
L2+1

α∗2 ≈ (α∗1)
log(N1)
log(N2)

An example that can be used in practice is the following: let’s consider a web graph withN1 = 11.5×109

pages (the size of the full Web estimated by [14]), and another graph with onlyN2 = 50×106 pages (the
size of the Web of a large country); the second graph is roughly 3 orders of magnitude smaller.
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If it is shown empirically thatα∗1 = 0.85 is a good value for the PageRank parameter for the whole Web,
thenα∗2 = 0.81 should have a similar behavior in the 50-million page set, which is natural as the path lengths
are shorter. If the subset of web pages were even smaller, for instance,N2 = 106 pages (the size of the web
of a large organization), thenα∗2 = 0.76.

5.2 Damping parameters and in-degree

In this section, we are using data from the.uk Web graph and a 8,500-nodes synthetic graph with the same
indegree and outdegree distribution than the previous synthetic graph. We first measured the variance of
the values from the ranking function, as we consider that a high variance is good in a ranking function
as the relative values differ more. We also measured the relationship between the ranking function and
in-degree for different values of the parameters in terms of covariance, correlation coefficient and ranking
orders (Kendall’sτ). The results are shown inFigure10.
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Figure 10: Variance of PageRank, and its relationship with indegree in terms of
covariance, correlation coefficient and Kendall’sτ coefficient, for varying values
of the parameterα. Top: .uk web graph; bottom: synthetic graph.

The variance is higher asα increases. In regard to the relationship with indegree, for company home
pages, it has been shown that the logarithm of the in-degree is correlated with PageRank [33]. Our results
are consistent with this observation. The covariance monotonically increases withα both in the case of
the synthetic graph and in the web graph. Not surprisingly, using the generative model the correlations are
higher. We observe a maximum correlation atα = 0.7 in the synthetic graph and atα = 0.5 in the web
graph. We also notice that the correlation drops significativelly asα increases, because a largeα means that
longer paths have an effect in the calculation; note, however, that this phenomenon does not significantly
impact on the correlation coefficient that is still very large.

A high correlation between PageRank and in-degree is bad from the point of view of a search engine,
because it makes link-spam easier. In particular, as the correlation coefficient is higher in the.uk web graph
near 0.5, if we chooseα close to this value we are helping link spammers. Note, however, that a high
correlation was foreseeable because, as shown in[10], even approximating PageRank with just only 1 level
of links gets 70% of accuracy.
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The behavior of the Kendall’sτ coefficient which measures the similarity between ranking orders is
the opposite than the one observed in the real graph. This also happens for HyperRank, as inFigure11
we made the same measurements for this functional ranking, and the results were consistent. The graph
seems inverted because a low value ofβ has the same effect as a high value ofα: longer paths have more
importance in the calculation.
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Figure 11: Variance of general hyperbolic rank for some values ofβ, and its
relation with in-degree. Experiments have been performed on the.uk graph (top)
and synthetic graph (bottom).

The differences in the behavior of the ranking order in the synthetic graph might be explained by the
fact that the generative model we are using does not capture some properties that might be relevant for the
ranking order under a functional ranking such as the clustering coefficient. Also, the synthetic graph is
assortative (highly linked pages are mostly linked to other highly linked pages), while the real web graph is
disassortative (most of the neighbours of highly linked pages have small indegree).

5.3 Experimental comparison of ranking orders

In this section, we present experimental results about the similarity between the ranking orders induced by
some of the functional rankings discussed in the previous sections. To perform the comparison, we used
Kendall’sτ and data from the U. K. Web graph.Figure12shows how PageRank compares with HyperRank
for various pairs ofα andβ. In the limit α,β→ 1 both rankings are equivalent, and they remain similar in a
large region of the parameter space.

In the figure, we can see that the rankings obtained with HyperRank and PageRank can be almost
equivalent (Kendall’sτ ≥ 0.95), moreover, the analysis shown insection4.2 considering only paths of
lengths less than 5, provides a very good approximation for the optimum combination of parameters. This
means that in fact, the difference in the damping functions in the first few levels is crucial.

The exponentsβ required for giving a good approximation of PageRank are very small whenα ≥ 0.7,
limiting the practical applicability of HyperRank, as its convergence is not faster than the one of PageRank.

As far as LinearRank and PageRank are concerned, long paths and largeα should be considered to
obtain a sufficiently similar ranking, as shown inFigure13.
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Figure 13: Comparison (using Kendall’sτ) between PageRank and LinearRank
in the U.K. web graph, with various damping parameters. Again, the predicted
optimum with` = 5 is very close to the actual optimum.

The predicted optimum given insection4.3 with ` = 5, this is, considering only the summation of the
differences between both damping functions up to paths of length 5, is very close to what was obtained in
practice. Forα = 0.8, calculating LinearRank withL = 10 (which means the same number of iterations)
givesτ ≥ 0.98; for α = 0.9, calculating LinearRank withL = 15 also givesτ ≥ 0.98. In both cases, the
ranking order of PageRank is approximated by the ranking order of LinearRank with very high precision.

6 Conclusions

In this paper we have defined a broad class of link-based ranking algorithms based on the contribution of
damping factors along all different paths reaching a page. We introduce four particular damping decays: lin-
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ear, exponential, quadratic hyperbolic and general hyperbolic, where exponential is equivalent to PageRank
and quadratic hyperbolic to TotalRank.

We studied the differences and similarities among these ranking algorithms, and we have found that:

• Functional rankings using different damping functions can provide similar orderings, if the parameters
are chosen carefully.

• LinearRank can be used for calculating a ranking that is as good as PageRank, but with a fixed, and
smaller, number of iterations.

• The parameters for the damping functions depend on the characteristic of path lengths in the graph,
which is known to grow sub-logarithmically on the size of the graph.

More work is needed to find other damping functions that compute rankings similar to PageRank but
are easier and faster to compute. We use global ranking similarity, but another measure could be the ranking
similarity in the top 20 results of real queries. In this setting our results can change, so future work will
include this variation.

Because of their high cost, link-based ranking methods that involve iterative calculations at query time
are probably not used by large-scale search engines at this moment, but the functional ranking with linear
damping we have presented can provide a good approximation with few iterations. Also, the approach we
have presented could be also applied to multivalued ranking functions such as HITS [23] and topic-sensitive
PageRank [19] to obtain, for instance, a method for approximating the hubs and authority scores using less
iterations and a linear damping function.

Our approach also helps to understand how easy or difficult is to collude many pages to modify the
ranking of a given page. Clearly there are many different factors: path lengths, damping function, branching
degrees, and number of colluded pages. The graph structure of the collusion will affect those factors and we
plan to analyze them.
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