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Abstract

This paper introduces a family of link-based ranking algorithms that prop-
agate page importance through links. The algorithms include a damping
function which decreases with distance, thus a direct link implies greater en-
dorsement that a link via a longer path. PageRank is the most widely known
ranking function of this family.

The main objective of this paper is to determine whether thisfamily of
ranking techniques is of some interestper se, and how different choices
for the damping function affect rank quality and convergence speed. Even
though our results suggest that PageRank can be approximated with other
more simple forms of rankings that may be computed more efficiently, our
focus is more speculative in nature, given that it aims at separating the ker-
nel of PageRank, that is, link-based importance propagation, from the way
propagation decays over paths.

We focus on three damping functions that have linear, exponential, and
hyperbolic decay on the lengths of the paths. The exponential decay corre-
sponds to PageRank, and the other functions are new. The workwe carry
includes algorithms, analysis, comparisons and experiments that study their
behavior under different parameters in real Web graph data.

Amongst other results, we show how to calculate a linear approximation
that induces a page ordering that is almost identical to PageRank’s using a
fixed number of iterations. Comparisons were made using Kendall’s τ on
large domain datasets.

∗Partially supported by MIUR COFIN Project “Linguaggi formali e automi” and by the EC
Project DELIS.

†Currently at Yahoo! Research Barcelona.
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1 Introduction

While traditional Information Retrieval (IR) methods are used by web search en-
gines to some extent, the web is much more extensive, dynamicand less coherent
than traditional text collections [Arasu et al., 2001]. TheWeb is an open medium in
which everyone can publish information; this has been key toits success but, at the
same time acts as a major source of problems for information retrieval researchers.

Fortunately, the Web provides an extra source of information that is not present
in traditional text repositories: there are hyperlinks among pages, and these hyper-
links convey information, they are not placed at random. Forinstance, a pair of
pages linked together would be much more likely to belong to the same topic than
two pages taken at random [Davison, 2000].

1.1 Link analysis

In the Web, we can identify three levels of link analysis:

• Themicroscopic levelof link analysis is related to the statistical properties
of links of individual nodes.

• Themacroscopic levelof link analysis is related to the structure of the Web
at large.

• Themesoscopic levelof link analysis is related to the properties of areas or
regions of the Web.

The macroscopic levelof description of the Web started with a seminal pa-
per by Broder et al. [Broder et al., 2000], in which a global structure was de-
scribed based on the presence of a large strongly connected component. This
is called thebow-tie structure of the Web, presented in Figure 1. Further re-
finements of this model identified areas inside the CORE component, described
in [Donato et al., 2005, Baeza-Yates et al., 2004].

A related macroscopic description is theJellyfish structuredescribed in [Tauro et al., 2001]
for autonomous systems in the Internet topology. Accordingto this view, depicted
in Figure 2, we can identify a core portion, surrounded by areas of decreasing link
density, and with many nodes forming long, loosely-connected chains ortentacles.

Themicroscopic levelof description on the Web has been done by several au-
thors, e.g. [Huberman, 2001, Barabási, 2002], and is basedon the observation that
the distribution of the degree on the Web is very skewed, not showing the typical
Poisson distribution observed in classical random graphs [Erdõs and Rényi, 1960].
In scale-free networks, such as the Web, the distribution ofthe number of links of
a pagep follows a power-law:
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Figure 1: Schematic depiction of the macroscopic “bow-tie”structure of the
Web [Broder et al., 2000].

Figure 2: Schematic depiction of the macroscopic “jellyfish” structure of the Inter-
net [Tauro et al., 2001].

Pr(pagep hask links) ∝ k−θ (1)

Scale-free networks have a few highly-connected links thatact as “hubs” con-
necting many other nodes to the network. The connectivity ofscale-free networks
is resistant to random removal of edges [Callaway et al., 2000], and can be ex-
plained in part by a “preferential attachment” process [Barabási and Albert, 1999],
also called arich-get-richerphenomenon or Yule process.

Mesoscopic link analysisis related to the properties of the neighborhood of a
node, the context in which most of the link-based ranking functions work. A way
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of describing the neighborhood of a node is known as the “hop-plot”: a plot of the
number of different neighbors at different distances, suchas the one depicted in
Figure 3.

Figure 3: Schematic depiction of the “hop-plot”: a plot of the number of neighbors
at different distances.

The class of functional rankings which we describe in this paper, including
PageRank, belong to this level of analysis, given that most of the ranking of a node
comes from its short-range connections. This will be clearer later on in this article,
in particular in Section 4.

The mesoscopic level is also the level of description at which local structures,
such as communities or clusters of nodes, can be observed.

Figure 4 shows a visual summary of the levels of link-based analysis we have
described.

1.2 Ranking through links

The fact that there might be thousands, or even millions, of pages available for any
given topic, makes the problem ofranking these pages into a short list are of the
main problems of Web IR, thus requiring a method of estimating relevance.

One of the measures of importance of a scientific paper is the number of cita-
tions that the article receives. Following this idea, several authors proposed to use
links for ranking web pages [Marchiori, 1997, Joo and Myaeng, 1998, Li, 1998];
however, it quickly become clear that just counting the links was not a very reli-
able measure of authority (it was not in scientific citationseither), because it is very
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Figure 4: Levels of link-based analysis.

easy to manipulate in the context of the web, where creating apage costs almost
nothing.

The PageRank technique, introduced by Pageet al.[Page et al., 1998], actually
tries to mend this problem by looking at the importance of a page in a recursive
manner: “a page with high PageRank is a page referenced by many pages with
high PageRank”. The algorithm not only counts the direct links to a page, but also
includes indirect links. The same is valid for scientific andbibliographic citations
in general.

PageRank is a simple, robust and reliable way to measure the importance of
web pages, has a clear interpretation as a markovian process, and can be computed
in a very efficient way. For these reasons, most of today’s commercial search en-
gines are believed to use it as a part of their ranking function. There are other
well-known methods for link-based ranking that we do not discuss here, such as
HITS [Kleinberg, 1999, Bharat and Henzinger, 1998] or SALSA[Lempel and Moran, 2001];
for a survey of them see [Borodin et al., 2005].

1.3 Our contribution

In this paper we describe general ranking functions that depend on incoming paths
of varying length, and show that PageRank belongs to this class of functions. We
also provide stream algorithms for computing these rankingfunctions that use
memory in the order of the number of nodes, and disk space in the order of the
number of edges.
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Next, we question how do these functions relate to each other(i.e.: if they
produce similar rankings), and finally we test one of the ranking functions for an
Information Retrieval task (ranking a set of pages).

The rest of this paper is organized as follows: Section 2 describes the datasets
and experimental framework we use in the rest of the paper. Section 3 introduces
the notion of functional ranking, and Section 4 describes several damping func-
tions. Section 5 compares the ranking functions analytically and experimentally.
Finally, Section 6 tests the precision of one of the damping functions and Section 7
presents our conclusions.

This paper extends the results presented in preliminary form in [Baeza-Yates et al., 2006].

2 Datasets and experimental framework

In the following sections we experiment with several Web datasets. We use several
snapshots from the Web obtained by the Laboratory of Web Algorithmics, Di-
partimento di Scienze dell’Informazione, Universit̀a degli studi di Milano. These
data sets are available athttp://law.dsi.unimi.it/). In particular, we used
theuk-2002, it-2004 andeu-int-2005 Web graphs. They correspond to a 18-
million pages crawl of the.uk domain in 2002, a 40-million pages crawl of the
.it domain in 2004 ,.it and a 860,000-pages crawl from the.eu.int domain in
2005.

In addition to real Web data, we also considered a synthetic scale-free network
produced according to the evolving model described by Kumaret al. [Kumar et al., 2000]
(a combination of preferential attachment and random links) with parameters sug-
gested by Panduranganet al. [Pandurangan et al., 2002]. In the generated graph
the exponents for the power-law in the center part of the distributions are -2.1 for
in-degree and PageRank, and -2.7 for out-degree. We generated a 100,000-nodes
graph without disconnected nodes.

To compare ranking orders among different ranking functions, we used Kendall’s
τ [Kendall and Gibbons, 1990]: this is one of the most widely used and intuitive
nonparametric correlation indices, that has recently received much attention within
the web community for its possible applications to rank aggregation [Fagin et al., 2003b,
Fagin et al., 2003a, Dwork et al., 2001] and for determining the convergence speed
in the computation of PageRank [Kamvar et al., 2003b]. Kendall’s τ is usually de-
fined as the normalized difference between the number of concordances (i.e., pairs
on which the two orders agree) and the number of discordances(i.e., pairs on which
the two orders disagree). There are some variants of this measure, that differ on
the way ties are treated. Kendall’sτ is always in the range[−1,1]: τ = 1 happens
if the two total orders induced by the ranks are the same, whereasτ =−1 happens
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when the two total orders are opposite of each other;τ = 0 can be interpreted as
lack of correlation.

3 Propagating rank through links

In this section, we introduce the notion offunctional ranking, a general family
of ranking functions that includes PageRank. To describe PageRank formally, we
consider a web graph ofN pages. LetAN×N be the adjacency matrix in this graph,
ai, j = 1 iff there is a link from pagei to pagej. This link matrix is hardly ever used
as it is, mainly as it is not normalized and it has “dangling nodes”.

3.1 Normalization

In the Web, creating an out-link is free, so there is an incentive for web page authors
to create pages with many out-links; this is the reason why a metaphor of “voting”
is enforced [Lifantsev, 2000] in which each page has only one“vote” that has to
be split among its linked pages. This is typically done in link-based ranking by
normalizingA row-wise: the normalization process means that every web page
can only decide how to divide its own score among the pages it leads to, but it
cannot distribute more score than the score it has received.Another way to look at
normalization is that the matrix is turned into the transition matrix of a stochastic
process.

The normalization does not need to give each out-link the same value, due to
the evidence that web links have different purposes such as navigating in a multi-
page set, expanding the contents of the current page, pointing to another resource,
etc. [Haas and Grams, 1998]. Also, links within the same sitecan be considered
self-links and as such do not confer as much authority as a link between different
sites; indeed, there are ranking methods like BHITS [Bharatand Henzinger, 1998]
that treat them differently. Other characteristics of links, such as the exploration
level at which they appear in Web sites [Liu and Ma, 2005], or if they are at the
beginning or the bottom of individual pages, or inside a certain HTML element,
can also be used for non-uniform normalization [Baeza-Yates and Davis, 2004].

To simplify our treatment, we will assume uniform normalization, so if a page
hasd out-links, each of those links has a weight of 1/d, but the results of this paper
can be applied to other forms of normalization.

3.2 Dangling nodes

Special attention should be paid to the possible presence ofnodes with no outgoing
arcs (known as “sinks” in graph theory): in fact, dangling nodes fail to produce a
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row-stochastic matrix, because the rows of dangling nodes are filled with zeroes.
Dangling nodes can be dealt with by adding an extra node that is linked to and from
all other nodes, or by introducing new arcs from each dangling node to every node
in the graph [Eiron et al., 2004]. In our analysis, we shall assume that all dangling
nodes have been eliminated already in some way, so that we do not have to worry
about their presence. All the algorithms we will present canbe modified so that
dangling nodes can be dealt with explicitly and with virtually no additional cost.

Let P be the row-normalized link matrix of the graph withN nodes. Page-
Rankr(α) is defined as the stationary distribution of the Markov chainwith state
transitions given by the matrix

αP+(1−α)1Tv

whereα ∈ [0,1) is a parameter calleddamping factor(sometimes also called a
dampening factor), andv is a fixedpreference vectorthat may represent the inter-
ests of a particular user, or another ranking vector that is used for weighting pages.
Note that the above matrix is ergodic (at least, if every entry of v is strictly posi-
tive), so it has exactly one stationary distribution. Even though most of our results
can be easily restated with a non-uniform preference vectorv, for the sake of clarity
we shall only consider the uniform preference1/N in the rest of the paper.

As observed in [Fogaras, 2003, Boldi et al., 2005], the PageRank vectorr(α)
can be written as:

r(α) = (1−α)
∞

∑
t=0

αt 1
N

1Pt ,

or in matricial form:

r(α) = (1−α)
1
N

1(I −αP)−1 ||αP||< 1.

There is, in fact, an equivalent, very intriguing way of rewriting this formula,
mentioned in [Newman et al., 2001] that leads to a conclusionsimilar to those
of [Brinkmeier, 2006]: given a path, that is, a sequence of edges in the graph
p = 〈x1,x2, . . . ,xk〉, such that nodexi is connected to nodexi+1, we define its
branching contributionas follows

branching(p) =
1

d1d2 · · ·dk−1

whered j is the outdegree, this is, the number of outgoing arcs, of node x j .
Then, the ranking of nodei according to PageRank is

r i(α) = ∑
p∈Path(−,i)

(1−α)α|p|

N
branching(p)
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where Path(−, i) is the set of all paths into nodei and|p| is the length of pathp:
this is because(Pt)i j contains the sum of the branching contributions of all paths
of lengtht from i to j, as one can easily show by induction ont (a path of length
0 and branching 1 is also included in the summation). This wayof expressing the
PageRank of a node is interesting, because it highlights thefact that the rank of a
node is essentially obtained as a weighted sum of contributions coming from every
path entering into the node, with weights that decay exponentially in the length of
the path.

A natural generalization of this idea consists in taking into consideration a
rankingR of the general form:

R =
∞

∑
t=0

damping(t)
1
N

1·Pt

or equivalently

Ri = ∑
p∈Path(−,i)

damping(|p|) 1
N

branching(p)

where the damping function is a suitable choice of weights.
We call this form of ranking afunctional ranking, as it is parametrized by a

damping function. This generalizes Lifantsev’s [Lifantsev, 2000] model in which
the damping factor is a matrix ofvoting trust that is fixed during the computa-
tion, whereas in our case, this explicitly depends on the iterations. Our damp-
ing function could be even more general by usingD(t), a damping matrix in-
stead of damping(t) 1

N 1; in this paper we analyze only the latter form. Foga-
ras [Fogaras, 2003] proposed using decreasing link weightsdepending on path
lengths in the reverse link graph, and used exponentially decreasing weights as
in PageRank for finding good Web browsing “starting points” in the Web graph.
Another, yet unexplored, possible direction would be to consider damping func-
tions that depend on other properties of the paths (e.g., whether the path passes
through some node out of a certain set) rather than on their length.

As we have seen, generic PageRank is a functional ranking where the damping
function

damping(t) = (1−α)αt

decays exponentially fast (something similar was first considered in citation anal-
ysis back in 1953! [Katz, 1953]).

3.3 Characteristic path lengths

In scale-free networks, the distances between pairs of nodes follow a Gaus-
sian distribution [Albert et al., 1999]. Analytic estimations for the average
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distance of a graph of scale-free network ofn nodes include: O(log(n))
[Watts and Strogatz, 1998];O(log(n) / log(np)) in sparse graphs withp
links [Chung and Lu, 2001]; 1+ log(n/z1)/ log(z2/z1) wherez1 is the average in-
degree, andz2 is the average number of nodes at distance 2 [Newman et al., 2001];
andO(log(n)/ log(log(n))) [Bollobás and Riordan, 2004].

The above results apply to different static scale-free networks, not to the evolu-
tion of a particular scale-free network over time. Empirical observations in several
different domains demonstrate that given a specific graph, its diameter may shrink
over time, even if its number of nodesn is increasing [Leskovec et al., 2005].

In the static graphs we have (.eu.int, .uk, and.it) we did the following
experiment: starting from a node picked at random, we followed the links back-
wards and counted the number of nodes at different distances. Figure 5 plots the
average distances found, which appear to be related (sub)logarithmically with the
size of the graph. Figure 6 shows the distribution obtained in these samples. For
this experiment, we are not counting the pages without in-links.
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Figure 5: Average distances versus number of nodes in four Web graphs.

The act of linking a page represents human endorsement and should not be
affected by the size of the graph. Nor should the act of following a link, in terms
of a random surfer, be affected. However, an algorithm forpropagatingthis en-
dorsement through links for computing a ranking function needs to account for the
typical distances involved; this requirement is typical ina situation where local
properties have a global impact: for example, the addition of a single arc could
drastically reduce the diameter of a graph.

In most cases, researchers have used exponential damping with base 0.85 or
0.90 in graphs that are much smaller than the full Web (concept graphs, social
networks, e-mail graphs, etc.), meaning that a potentiallymuch larger fraction of
the nodes contributed towards link ranking. We consider that in a smaller graph,
the damping function should decay faster.
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Figure 6: Distribution of the average number of nodes at a certain distance from a
given node, in three Web samples.

If graphs of different sizes show different path lengths, what is the effect of
this in the ranking calculation? Let’s suppose that for a graph with N1 nodes it is
found, by experimental or analytic means, that a good parameter for PageRank is
α∗1. Now, we would like to have a good parameterα∗2 for a graph with the same
properties, except that the size of the new graph isN2 < N1.

One possible approach, remaining consistent with what we have done so far, is
to view the sum of the weights up to the average path lengths ofthe graphs (L1, L2)
as having to be similar in order for both rankings to behave ina similar way. If we
take this approach, the solution is:

1− (α∗1)
L1+1 = 1− (α∗2)

L2+1

α∗2 = (α∗1)
L1+1
L2+1

α∗2 ≈ (α∗1)
log(N1)
log(N2)

An example that can be put into practice is the following: let’s consider a
web graph withN1 = 11.5× 109 pages (the size of the full Web estimated by
[Gulli and Signorini, 2005]), and another graph with onlyN2 = 50× 106 pages
(the size of the Web of a large country); the second graph is roughly 3 orders of
magnitude smaller.

If it is shown empirically thatα∗1 = 0.85 is a good value for the PageRank
parameter for the whole Web, thenα∗2 = 0.81 should have a similar behavior in the
50-million page set, which is natural as the path lengths areshorter. If the subset
of web pages were even smaller, for instance,N2 = 106 pages (the size of the web
of a large organization), thenα∗2 = 0.76, and for smaller graphs ofN2 = 105 nodes,
α∗2 = 0.72. We recommend using these values for graphs that are not comparable
in size to the full Web graph.
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4 Damping functions

First, we show which class of damping functions generates well-defined functional
rankings. As shown in [Brinkmeier, 2006, Corollary 2.4], for every pair of nodesi
and j, and for every lengtht

∑
p∈Path(i, j),|p|=t

branching(p)≤ 1.

A more general property holds:

Theorem 1. For every node i and every length t

∑
p∈Path(i,−),|p|=t

branching(p) = 1.

Proof. By induction ont. For t = 0, there is only one path fromi of length 0,
and its branching is 1. For the inductive step the above expression can be rewritten
by observing that, ifi has outdegreedi , every path fromi of length t + 1 is the
concatenation ofi with a path of lengtht from an out-neighbor ofi:

∑
p∈Path(i,−),|p|=t+1

branching(p) =

∑
j:i→ j

1
di

∑
p∈Path( j,−),|p|=t

branching(p) = ∑
j:i→ j

1
di

= 1.

As a consequence, to guarantee that the functional ranking is well-defined and
normalized (i.e., that rank values sum to 1) we need:

N

∑
i=1

∑
p∈Path(−,i)

damping(|p|) 1
N

branching(p) = 1

that is
∞

∑
t=0

damping(t)
1
N ∑

p∈Path(−,−),|p|=t

branching(p) = 1.

Using Theorem 1,∑p∈Path(−,−),|p|=t branching(p) = N, so the latter equality is
equivalent to

∞

∑
t=0

damping(t) = 1.
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Hence, every choice of the damping function such that the sumof dampings is 1
yields a well-defined normalized functional ranking. However, not all choices are
equivalent, so we have to find out which functions generate better rankings. Since
a direct link should be more valuable as a source of evidence than a distant link,
we focus on damping functions that are decreasing ont, the length of the paths.
We also focus on normalized ranking functions, as they are easier to combine with
other signals to produce a combined ranking for an object.

Computation. For calculating functional rankings, we use the general algo-
rithm shown in Figure 7; the next sections provide details onthe initialization, stop
condition and iteration steps for each calculation.

Require: N: number of nodes,v: preference vector
1: for i : 1 . . . N do {Initialization}
2: S[i] ← R[i] ← START
3: end for
4: for k : 1 . . . ∞ do {Iteration step}
5: if STOPthen
6: break
7: end if
8: Aux← 0
9: for i : 1 . . . N do {Follow links in the graph}

10: for all j such that there is a link fromi to j do
11: Aux[j] ← Aux[j] + R[i]/outdegree(i)
12: end for
13: end for
14: for i : 1 . . . N do {Add to ranking value}
15: R[i] ← Aux[i] × DAMP(k)
16: S[i] ← S[i] + R[i]
17: end for
18: end for
19: return S

Figure 7: Template algorithm for computing a functional damping. START, STOP
and DAMP(k) differ for each functional ranking.
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4.1 Linear damping

Let’s start by considering a simple damping function such as:

damping(t) =

{

2(L−t)
L(L+1) t < L

0 t ≥ L

that is, a damping function that decreases linearly with distance, and reaches zero
at distanceL. The trivial caseL = 1 gives a uniform ranking, andL = 2 is ranking
by in-degree, as in the latter case all paths of length≥ 2 are not considered.

From the definition,

R =
∞

∑
t=0

damping(t)vPt =
L

∑
t=0

2(L− t)
L(L+1)

vPt

=
2

L(L+1)
v

L−1

∑
t=0

(L− t)Pt

=
2

L(L+1)
v(L(I −P)−P(I −PL))((I −P)2)−1 .

provided that(I −P)2 is not singular.
An advantage of this type of ranking is that only the first few levels are taken

into consideration, so the number of iterations is fixed. Therationale for this is that
after a certain distance the information given by links can be disregarded.

Computation. For computing this functional ranking, we can define the fol-
lowing sequence:

R(0) =
2

L+1
v

R(k+1) =
(L−k−1)

(L−k)
RkP .

The functional ranking with linear damping is∑L−1
k=0 R(k). For computing this rank-

ing, the generic algorithm shown in Figure 7 can be used, with:

START : 2v[i]/(L+1)

STOP : k = L

DAMP(k) : (L−k)/(L− (k−1))

14



4.2 Exponential damping: PageRank

As we already noted, PageRank can be seen as a functional ranking where the
damping function decays exponentially:

damping(t) = (1−α)αt .

Given that longer paths are of lower importance in the calculation of PageRank, it
could be approximated by using only a few levels of links. In [Chen et al., 2004],
it is shown that by using only the nodes at distance 1 from a target node (equivalent
to linear damping withL = 2), PageRank values can be approximated with 30%
of average error. Using nodes at distance 2, the average error drops to 20% and at
distance 3, to 10%. After that, there are no significant improvements by adding a
few more levels, and the cost (the number of nodes to be explored) is much higher.

Computation. Since PageRank is the principal eigenvector of the modified
graph matrix, it can be easily approximated by the iterativePower Method algo-
rithm, as suggested by Pageet al. in their original paper [Page et al., 1998]; this
iterative algorithm gives good approximations (both in norm and with respect to
the induced node order) in few iterations, even though convergence speed and nu-
merical stability decay whenα gets close to 1 [Haveliwala and Kamvar, 2003b,
Haveliwala and Kamvar, 2003a]. Other methods to compute PageRank have been
proposed, some of them using techniques for the solution of systems of linear equa-
tions, some other concentrating on some specific features ofthe web as a graph
that determine forms of locality in the computation of PageRank (see, for exam-
ple, [Page et al., 1998, Haveliwala, 1999, Golub and Greif, 2004, Lee et al., 2004,
Kamvar et al., 2003c, Kamvar et al., 2003a]).

Of course, the generic algorithm shown in Figure 7 can be used, with:

START : (1−α)v[i]

STOP : convergence

DAMP(k) : α

4.3 Quadratic hyperbolic damping: TotalRank

Recently, a ranking method called TotalRank [Boldi, 2005] has been proposed. The
method aims at eliminating the necessity for an arbitrary parameter by integrating
PageRank over the entire range ofα. If r(α) is the vector of PageRank, then
TotalRank is defined as:

T =

Z 1

0
r(α)dα .
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T can be written as:

Z 1

0
r(α)dα =

1
N

∞

∑
t=0

Z 1

0
(1−α)αt1·Ptdα

=
1
N

∞

∑
t=0

1
(t +1)(t +2)

1·Pt ,

where the first equality is obtained applying Theorem 1.27 of[Rudin, 1986].
By using the definition of the logarithm of a matrix:

ln(I −P) =−
∞

∑
k=1

Pk

k

we can write TotalRank as:

T = P−1(I +(I −P−1) ln(I −P))

provided thatP is not singular andP 6= I .
TotalRank is a weighted sum of the scores associated with paths of varying

lengths, in which the weights are hyperbolically decreasing on the lengths of the
paths. In other words, TotalRank is a functional ranking with damping function:

damping(t) =
1

(t +1)(t +2)
=

1
t +1

− 1
t +2

,

and it is well defined since∑∞
t=0damping(t) = 1.

Computation. It is known that the cost of calculating TotalRank is the sameas
the cost of calculating PageRank via the Power Method [Boldiet al., 2005], even
though some more iterations are required to obtain the same precision.

4.4 General hyperbolic damping: HyperRank

TotalRank is part of a more general family of weighting schemes for paths of dif-
ferent lengths that can be approximated using:

s(β) =
1

Nζ(β)

∞

∑
t=0

1

(t +1)β 1·Pt .

Again, this way of ranking follows the general scheme, with damping function
chosen as

damping(t) =
1

ζ(β)(t +1)β .
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Here, we are using Riemann’s zeta function,ζ(β) = ∑∞
t=1 t−β for normalization,

and we needβ > 1 for it to converge. Note that whenβ = 2 we get weights similar
to those of TotalRank, in which thet-th coefficient is 1/(t +1)(t +2) whereas here
it is 1/ζ(2)(t +1)2.

A meaningful choice forβ should be done considering the distribution of paths
of different lengths in a scale-free graph. A largeα in PageRank, or a smallβ in
HyperRank, means increasing the effect of longer paths in the score.

Computation. Let us define a vector sequenceR(t) as follows:

R(0) =
1

Nζ(β)

R(k+1) =

(

k+1
k+2

)β
R(k)P .

It is easy to see that∑∞
t=0 R(k) = s(β), becauseR(k) = 1/(N · ζ(β)(k + 1)β))1 ·

Pk; this observation allows us to use the generic algorithm of Figure 7 with the
following parameters:

START : v[i]/ζ(β)

STOP : convergence

DAMP(k) : (k/(k+1))β

Note that convergence speed is much slower than ordinary PageRank, especially
whenβ is close to 1, the norm of thek-th summand being bound by 1/(1+1/k)β.
Interestingly enough, though, convergence speed is reasonable if β is sufficiently
large.

4.5 An empirical damping

An empirical damping function would consider how much the value of an endorse-
ment decreases by following longer paths in the real web graph. This cannot be
known exactly, but we can attempt to measure it indirectly. Pages which are linked
to each other share a greater degree of similarity than pageschosen at random
[Davison, 2000]; evidence from topical crawlers [Srinivasan et al., 2005] shows
that when doing breadth-first exploring, the topic “drifts”as the distance increases.
On the same line of thought, we propose to use the decrease of text similarity as an
approximation to an “empirical” damping function. In [Menczer, 2004] it is shown
that text similarity and link distance are anti-correlatedup to 4-5 links.

In order to assess the correlation between link-distance and similarity, we per-
formed the following experiment: we considered a web graph corresponding to

17



a partial snapshot of the.uk domain with 18 million pages, and sampled 200
nodes at random. For each sampled node, we followed links backwards to ob-
tain nodes at a minimum distance of 1, 2, 3, 4, or 5 links. Then,we sampled
12,000 pairs at each minimum distance at random, and computed their similari-
ties with the original nodes. Similarity was measured usingthe normalization of
TF.IDF [Baeza-Yates and Ribeiro-Neto, 1999], without stemming or stop-word re-
moval.
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Figure 8: Link distance vs. average text similarity in a sample of 18 million pages
from the.uk domain. A link distance of one means direct linking. The textsimi-
larity appears to decrease linearly in the first few levels.

The resulting averages are shown in Figure 8, with standard deviation error
bars. Text similarity clearly decreases with distance, andin some applications the
empirical distribution of text similarity versus distancecould be used as an “em-
pirical” damping function. Different measures of text similarity can yield different
distributions; for instance [Wu et al., 2004] uses the number of repeated words and
phrases between pages and obtains a faster decrease in similarity. Our results show
that in our data set, a linear damping withL = 8 or L = 9 approximates better the
decrease of text similarity with distance than an exponential damping as suggested
in [Menczer, 2004]. Text similarity does not seem to decrease exponentially fast,
so there is noa priori reason to prefer exponential damping (PageRank) over other
functional rankings.
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An observation in [Menczer, 2004] is that for different communities, the link
structure could be different. For instance, academic Web pages might be better
connected than commercial pages, so an empirical damping function should mea-
sure first which is the correlation of link distance to text similarity in the specific
collection we want to rank.

5 Comparing damping functions

A comparison of the damping functions described in the previous section is shown
in Figure 9: of course, hyperbolic damping functions decay asymptotically more
slowly than exponential damping, but note that for short paths the latter may dom-
inate the former in many cases.
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Figure 9: Weights given by the different damping functions for some values ofα
andβ.

We can empirically observe that the ranking ordering produced by different
functional rankings are different. Nevertheless, in this section, we show that the
ranking order produced by one functional ranking can be approximated with great
precision by carefully choosing the parameters. This approximation has to be done
mostly by considering the weight of the first few levels of links.

The possibility of approximating the order of one functional ranking with
another is interesting, for instance, to approximate PageRank using LinearRank
(given that the latter uses a fixed number of iterations), or by another functional
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ranking in the future. In this section we also include approximations of PageRank
with TotalRank and HyperRank for completeness.

5.1 Approximating PageRank with TotalRank

It has been observed experimentally that the rank correlation (Kendall’sτ) between
TotalRank and PageRank is maximal whenα ≈ 0.7 [Boldi, 2005]; the maximum
value forτ is over 0.95, so for that specific choice ofα PageRank and TotalRank
induce almost equivalent ranking orders.

We now want to approach the same problem in an analytic fashion; to be more
exact, we aim to study the difference between TotalRank and PageRank by calcu-
lating the difference between their respective damping functions:

dampingTotalRank(t) =
1

(t +1) (t +2)

dampingPageRank(α)(t) = (1−α)αt .

As they are normalized, both damping functions have the samesummation over the
entire range oft. Our approach is to consider the summation of their differences up
to a maximum length for a path. As the two functions are decreasing, the difference
in the first levels makes most of the difference in the rankings. If ℓ is the maximum
path length we are interested in, we aim at minimizing this sum:

ℓ

∑
t=0

(

1
(t +1)(t +2)

− (1−α)αt
)

= αℓ+1− 1
ℓ+2

.

The minimum absolute value is 0, and it is obtained whenα is equal to

α∗(ℓ) =
1

ℓ+1
√

ℓ+2
= 1− logℓ

ℓ
+O

(

log2ℓ

ℓ2

)

.

Figure 10 showsα∗(ℓ) as a function ofℓ. Recall that for the World-Wide Web
graph, the average length of a path between two nodes, when a path exists, has been
estimated in about 16 [Broder et al., 2000] or 19 [Albert et al., 1999], but clearly
today is over 20. Now, in the range of path lengths between 15 and 20 the value of
α∗(ℓ) parameters that minimizes the difference between the exponentially decay-
ing weights of PageRank and the hyperbolically decaying weights of TotalRank is
roughly 0.85. Note that 0.85 is also the most typically used value for the damping
factor, so this merits further study.
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Figure 10: Left: difference of the sum of the weights for various combinations of
α andℓ. Right: α∗(ℓ) for minimizing the difference of the sum of weights between
PageRank and TotalRank.

5.2 Approximating PageRank with HyperRank

Now we want to approximate the weights of:

r(α) =
1−α

N

∞

∑
t=0

αtPt ,

using the weights of:

s(β) =
1

Nζ(β)

∞

∑
t=0

1

(t +1)β Pt

α

1.52.02.53.0β 5 10 15 20 25

 Length

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 1  1.5  2  2.5  3  3.5  4

α 
th

at
 m

in
im

iz
es

 th
e 

di
ffe

re
nc

e 
of

su
m

 o
f w

ei
gh

ts

Exponent β

Max path length=25
Max path length=20
Max path length=15
Max path length=10
Max path length=5
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tween PageRank and HyperRank, for various parameter combinations. Right: 2-D
view of the same plot.
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and we proceed again by considering paths up to a certain length:

ℓ

∑
t=0

(

1

ζ(β)(t +1)β − (1−α)αt .

)

The minimum can be zero, and it is attained at:

α∗(ℓ,β) = ℓ

√

1− 1
ζ(β)

ℓ

∑
t=0

1

(t +1)β .

Theα that minimizes the difference of weights for different values ofβ and of the
maximum path lengthsℓ is shown in Figure 11. In the case ofβ = 2, for instance,
for path lengths up to 10 to 20, the bestα is between 0.75 and 0.85.

5.3 Approximating PageRank with LinearRank

For approximating the damping function of PageRank with thedamping function
of LinearRank, we consider the summation of the differencesup to a certain path
length. Ifℓ≤ L:

ℓ

∑
t=0

(

(1−α)αt − 2(L− t)
L(L+1)

)

And if ℓ > L:
L−1

∑
t=0

(

(1−α)αt − 2(L− t)
L(L+1)

)

+
ℓ

∑
t=L

(1−α)αt

We will assume thatℓ ≤ L, so the evaluation of the difference between the two
rankings is done in an area where both rankings have non-zerovalues. TheL that
minimizes the difference for a given combination ofα andℓ is

L∗(α, ℓ) = ℓ+
(2ℓ+1)αℓ+1 +1+

√

(1+ αℓ+1)2 +4ℓ(ℓ+2)αℓ+1

2(1−αℓ+1)

= ℓ+1+O
(

ℓα(ℓ+1)/2
)

and we have plotted it for different values ofα andℓ in Figure 12.

5.4 Experimental comparison of ranking orders

In this section, we present experimental results about the similarity between the
ranking orders induced by some of the functional rankings discussed in the previ-
ous sections. To perform the experiments, we used data from the U.K. Web graph.
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Figure 12: Left: bestL for minimizing the difference of the sum of weights between
LinearRank and PageRank, for various parameter combinations. Right: 2-D view
of the plot on the left.

Figure 13 shows how PageRank compares with HyperRank for various pairs
of α andβ. In the limit α,β→ 1 both rankings are equivalent, and they remain
similar in a large region of the parameter space.
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Figure 13: Comparison (using Kendall’sτ) between PageRank and HyperRank,
with various damping parameters in the U.K. web graph. The optimum predicted
in the analysis withℓ = 5 is very close to the real one.

In this figure, we can see that the rankings obtained with HyperRank and Page-
Rank can be almost equivalent (Kendall’sτ ≥ 0.95). Furthermore, the analysis
shown in section 5.2 which only considers paths of lengths less than 5, provides a
very good approximation for the optimal combination of parameters. This means
that in fact, the difference in the damping functions in the first few levels is crucial.
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The exponentsβ required for giving a good approximation of PageRank are
very small whenα ≥ 0.7, limiting the practical applicability of HyperRank, as it
does not converge more quickly than PageRank.

This comparison was corroborated by an analogous series of experiments
where we used another (dis)similarity measure proposed in [Fagin et al., 2003b]:
this measure, calledintersection metric, is essentially an averaged normalized mea-
sure of the symmetric difference between the two top-k sets according to two given
rankings; the intersection metric evaluates to 1 when the top lists are disjoint. To al-
low comparison with Kendall’sτ, we choose to graphically represent in Figure 14
one minus the intersection metric; the choice ofk is of course relevant, but the
results are uniform for sufficiently largek.
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Figure 14: Comparison (using top-k intersection metric) between PageRank and
HyperRank, with various damping parameters in the U.K. web graph, fork= 1000
andk = 100000.

As far as LinearRank and PageRank are concerned, long paths and largeα
should be considered to obtain a sufficiently similar ranking, as shown in Figure 15.
In the range ofα = 0.8. . .0.9, paths of roughly 10 to 20 links should be considered
to obtain rankings that are almost equivalent.

The predicted optimum given in section 5.3 withℓ = 5 (i.e., considering only
the summation of the differences between both damping functions up to paths of
length 5) is very close to what was obtained in practice. Forα = 0.8, calculating
LinearRank withL = 10 (which means the same number of iterations) givesτ ≥
0.98; for α = 0.9, calculating LinearRank withL = 15 also givesτ ≥ 0.98. In
both cases, the ranking order of PageRank is approximated bythe ranking order of
LinearRank with very high precision. (A similar comparisonwas performed using
intersection metric instead, obtaining quite similar results.)

As a final remark, observe that (as shown in Figure 16) even though Linear-
Rank is a good approximation to PageRank, stopping PageRankcomputation after
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Figure 15: Comparison (using Kendall’sτ) between PageRank and LinearRank
in the U.K. web graph, with various damping parameters. Again, the predicted
optimum withℓ = 5 is very close to the actual optimum.

ℓ iterations usually gives a better (in the sense of Kendall’sτ) approximation to
real PageRank than LinearRank parametrized byℓ, especially for smallα, where
convergence is fast. Whether this observation could be extended to the precision
of both ranking functions for Information Retrieval tasks,is a problem that merits
further experiments and investigation.
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Figure 16: Comparison (using Kendall’sτ) between PageRank stopped after 5
iterations and LinearRank withℓ = 5 in the U.K. web graph, with various damping
parameters.

5.5 Comparison with in-degree

In this section, we study the behavior of the ranking functions for different values
of their parameters.
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In this section, we are using data from the.uk Web graph and a 8,500-nodes
synthetic graph. We first measured the variance of the valuesfrom the ranking
function, as we consider that a high variance is good in a ranking function as the
relative values differ more. We also measured the relationship between the ranking
function and in-degree for different values of the parameters in terms of correlation
coefficient and ranking orders (Kendall’sτ). The results are shown in Figure 17.
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Figure 17: Variance of PageRank, and its relationship with in-degree in terms of
correlation coefficient and Kendall’sτ coefficient, for varying values of the param-
eterα. Top: .uk web graph; bottom: synthetic graph.

The variance is higher asα increases. As far as the relationship with in-degree
is concerned, for company home pages, it has been observed that the logarithm
of the in-degree is correlated with PageRank [Upstill et al., 2003]. Our results are
consistent with this observation. Not surprisingly, usingthe generative model the
correlations are higher. We observe a maximum correlation at α = 0.7 in the syn-
thetic graph and atα = 0.5 in the web graph. We also notice that the correlation
drops significantly asα gets larger, because a largeα means that longer paths have
an effect in the calculation; note, however, that this phenomenon does not signifi-
cantly affect the correlation coefficient that is still verylarge.

A high correlation between PageRank and in-degree is bad from the point of
view of a search engine, because it makes link-spam easier. In particular, as the cor-
relation coefficient is higher in the.uk web graph near 0.5, if we chooseα close
to this value we are helping link spammers. Note, however, that a high correla-
tion was foreseeable because, as shown in [Chen et al., 2004], even approximating
PageRank with just only 1 level of links gets 70% of accuracy.
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The behavior of the Kendall’sτ coefficient which measures the similarity be-
tween ranking orders is the opposite than the one observed inthe real graph. This
also happens for HyperRank: in Figure 18 we made the same measurements for
this functional ranking, and the results were consistent (the graph seems inverted
because a low value ofβ has the same effect as a high value ofα: longer paths
have more importance in the calculation).
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Figure 18: Variance of general hyperbolic rank for some values ofβ, and its relation
with in-degree. Experiments have been performed on the.uk graph (top) and
synthetic graph (bottom).

The differences in the behavior of the ranking order in the synthetic graph
might be explained by the fact that the generative model we are using does not
capture some of the properties which might be relevant for the ranking order under
a functional ranking such as the clustering coefficient. Also, the synthetic graph
is assortative (highly linked pages are mostly linked to other highly linked pages),
while the real web graph is disassortative (most of the neighbors of highly linked
pages have small in-degree).

6 Experimental evaluation of precision

Finally, we would like to determine if a damping function that does not decay
exponentially as PageRank does still induces a ranking function that is appropriate
for information retrieval tasks.
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With this aim in mind, we used the WebTREC Gov2 collection1. This col-
lection consists of about 25 million documents obtained in 2004 from a crawl of a
large subset of the.gov (U.S. government) domain. The most important character-
istic of this collection is that it includes relevance judgments for a set of information
retrieval tasks.

We picked 50 of them at random and manually created keyword queries for this
evaluation, following the policy used in the standardad hocTREC tasks. We then
used the Managing Gigabytes for Java (mg4j) framework to select from the collec-
tion 1000 pages matching each query according and we re-ordered the query results
according to the scores resulting from different link-based rankings strategies.

At this point, we shifted our attention to the LinearRank ranking that uses lin-
ear damping, to see if LinearRank with a small number of iterations can provide a
ranking that is competitive with PageRank. On this graph, the PageRank calcula-
tion took 39 iterations to converge on the L1-norm of the difference between two
iterations to less than 10−6.

For the evaluation we computed the standard precision and recall measures
[Baeza-Yates and Ribeiro-Neto, 1999] and averaged them across all queries. Pre-
cision at result numberN (also denoted as “precision atN” or simply “P@N”)
is the fraction of correct results in the firstN results returned by the system; the
“correct” results in our case are taken from the quality assessments included in this
reference collection. This is shown in Figure 19 (a).

Another indicator that is usually measured is recall, whichis the proportion of
correct results which the system finds among the total numberof correct pages.
It is customary to interpolate the precision for different recall levels, and this is
shown in Figure 19 (b).

Of course using link ranking improves the precision over no ranking at all, and
PageRank and LinearRank behave very similarly. For instance, if we compare the
PageRank (that requires 39 iterations) with LinearRank at distance 5 (that requires
5 iterations only) we observe that the precision of the first element is 8% better for
PageRank, of the first five elements is 17% better for PageRank, but for the first
ten elements it is 2% better for LinearRank. From that point over, both rankings
are roughly equivalent.

This means that LinearRank at distance 5 can provide a level of precision for
information retrieval tasks that is quite similar to that ofPageRank. This is ap-
plicable in contexts where link-based ranking cannot be computed in advance, but
a computation at query time is necessary. For instance, thisoccurs if we need to
analyze links over a sub-graph that is generated at query time.

1Available from the University of Glasgow for research purposes. For inquiries about this collec-
tion, seehttp://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm.
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(a) Precision@N (b) Interpolated precision
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Figure 19: Evaluation of LinearRank and PageRank in the WebTREC collection.

7 Conclusions

In this paper we have defined a broad class of link-based ranking algorithms based
on the contribution of damping factors along all the different paths reaching a page.
We introduced four particular damping decays: linear, exponential, quadratic hy-
perbolic and general hyperbolic, where exponential is equivalent to PageRank and
quadratic hyperbolic to TotalRank.

We studied the differences and similarities between these ranking algorithms,
and we found that functional rankings using different damping functions can (if
the parameters are chosen carefully) provide similar orderings. LinearRank can be
used for calculating a ranking that is as good as PageRank forIR tasks. Also, the
parameters for the damping functions depend on the characteristic path lengths in
the graph, which are known to grow sub-logarithmically on the size of the graph.

More work needs to be done in order to find other damping functions that
compute rankings similar to PageRank but are easier and faster to compute. We
use a global ranking similarity, but another measure could be the ranking similarity
in the top 20 results of real queries. In this setting our results can change, so future
work will include this variation.

Because of their high cost, link-based ranking methods thatinvolve iterative
calculations at query time are probably not used by large-scale search engines at
present, but the functional ranking with linear damping which we have presented
can provide a good approximation with few iterations. Moreover, the approach
we have taken could be also applied to multivalued ranking functions such as
HITS [Kleinberg, 1999] and topic-sensitive PageRank [Haveliwala, 2002] to ob-
tain, for instance, a method for approximating the hubs and authority scores using
less iterations and a linear damping function.
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Our approach also helps to understand how easy or difficult itis to collude
many pages to modify the ranking of a given page. Clearly there are many dif-
ferent factors: path lengths, damping function, branchingdegrees, and number
of colluded pages. The graph structure of the collusion willaffect those factors
and we plan to analyze them. In particular, under the assumption that is easier
to “spam” closer links, PageRank damping is more affected bycollusion than
the rest of the damping functions presented here. This idea is further studied
in [Becchetti et al., 2006] by using a truncated exponentialdamping function for
spam detection.

We have use damping coefficients that are described by a simple function, but
we do not need this restriction. We could learn the best coefficients for an ad-hoc
damping function from a given Web collection. The aim, in this case, would be
to optimize the precision in a sample of queries and their relevant answers, or to
accurately filter spam given a sample of spam pages.
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