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Abstract

This paper introduces a family of link-based ranking altions that prop-
agate page importance through links. The algorithms irecladlamping
function which decreases with distance, thus a direct limlies greater en-
dorsement that a link via a longer path. PageRank is the mdstykknown
ranking function of this family.

The main objective of this paper is to determine whether fdmisily of
ranking techniques is of some intergmtr se and how different choices
for the damping function affect rank quality and convergespeed. Even
though our results suggest that PageRank can be approximwite other
more simple forms of rankings that may be computed more effibj, our
focus is more speculative in nature, given that it aims aassng the ker-
nel of PageRank, that is, link-based importance propagatiom the way
propagation decays over paths.

We focus on three damping functions that have linear, exptaleand
hyperbolic decay on the lengths of the paths. The exporel@ay corre-
sponds to PageRank, and the other functions are new. Thew®darry
includes algorithms, analysis, comparisons and expetsibat study their
behavior under different parameters in real Web graph data.

Amongst other results, we show how to calculate a linear@ppration
that induces a page ordering that is almost identical to Ragk’s using a
fixed number of iterations. Comparisons were made using &ésd on
large domain datasets.

*Partially supported by MIUR COFIN Project “Linguaggi fortha automi” and by the EC
Project DELIS.
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1 Introduction

While traditional Information Retrieval (IR) methods areed by web search en-
gines to some extent, the web is much more extensive, dyremiitess coherent
than traditional text collections [Arasu et al., 2001]. Mieb is an open medium in
which everyone can publish information; this has been kéigteuccess but, at the
same time acts as a major source of problems for informaditsieval researchers.

Fortunately, the Web provides an extra source of informatiat is not present
in traditional text repositories: there are hyperlinks agipages, and these hyper-
links convey information, they are not placed at random. iRstance, a pair of
pages linked together would be much more likely to belondnéosiame topic than
two pages taken at random [Davison, 2000].

1.1 Link analysis

In the Web, we can identify three levels of link analysis:

e Themicroscopic levelof link analysis is related to the statistical properties
of links of individual nodes.

e Themacroscopic levebf link analysis is related to the structure of the Web
at large.

e Themesoscopic levedf link analysis is related to the properties of areas or
regions of the Web.

The macroscopic levelof description of the Web started with a seminal pa-
per by Broder et al. [Broder et al., 2000], in which a globalisture was de-
scribed based on the presence of a large strongly conneotegoment. This
is called thebow-tie structure of the Web, presented in Figure 1. Further re-
finements of this model identified areas inside the CORE compmty described
in [Donato et al., 2005, Baeza-Yates et al., 2004].

Arelated macroscopic description is thalyfish structurelescribed in [Tauro et al., 2001]
for autonomous systems in the Internet topology. Accordlingpis view, depicted
in Figure 2, we can identify a core portion, surrounded bysia decreasing link
density, and with many nodes forming long, loosely-cone@chains otentacles

Themicroscopic levelof description on the Web has been done by several au-
thors, e.g. [Huberman, 2001, Barabasi, 2002], and is baiselde observation that
the distribution of the degree on the Web is very skewed, howig the typical
Poisson distribution observed in classical random graghdds and Rényi, 1960].

In scale-free networks, such as the Web, the distributiain@humber of links of
a pagep follows a power-law:
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Figure 1. Schematic depiction of the macroscopic “bow-tructure of the
Web [Broder et al., 2000].
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Figure 2: Schematic depiction of the macroscopic “jellyfistnucture of the Inter-
net [Tauro et al., 2001].

Pr(pagep hask links) (0 k=® 1)

Scale-free networks have a few highly-connected linksdloatis “hubs” con-
necting many other nodes to the network. The connectivitgscafe-free networks
is resistant to random removal of edges [Callaway et al.0R0&nd can be ex-
plained in part by a “preferential attachment” process @dasi and Albert, 1999],
also called aich-get-richerphenomenon or Yule process.

Mesoscopic link analysiss related to the properties of the neighborhood of a
node, the context in which most of the link-based rankingfiams work. A way



of describing the neighborhood of a node is known as the ‘filop: a plot of the
number of different neighbors at different distances, saglthe one depicted in
Figure 3.
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Figure 3: Schematic depiction of the “hop-plot”: a plot o&thumber of neighbors
at different distances.

The class of functional rankings which we describe in thipgsaincluding
PageRank, belong to this level of analysis, given that midteoranking of a node
comes from its short-range connections. This will be clekater on in this article,
in particular in Section 4.

The mesoscopic level is also the level of description at twkocal structures,
such as communities or clusters of nodes, can be observed.

Figure 4 shows a visual summary of the levels of link-basealyais we have
described.

1.2 Ranking through links

The fact that there might be thousands, or even millionsagep available for any
given topic, makes the problem ddnkingthese pages into a short list are of the
main problems of Web IR, thus requiring a method of estingateievance.

One of the measures of importance of a scientific paper isuh&oer of cita-
tions that the article receives. Following this idea, salvauthors proposed to use
links for ranking web pages [Marchiori, 1997, Joo and Myaelt$g$8, Li, 1998];
however, it quickly become clear that just counting thedinkas not a very reli-
able measure of authority (it was not in scientific citatieiter), because itis very
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Figure 4: Levels of link-based analysis.

easy to manipulate in the context of the web, where creatipgge costs almost
nothing.

The PageRank technique, introduced by Retgd. [Page et al., 1998], actually
tries to mend this problem by looking at the importance of gepim a recursive
manner: “a page with high PageRank is a page referenced by pages with
high PageRank”. The algorithm not only counts the diredtdito a page, but also
includes indirect links. The same is valid for scientific dnbliographic citations
in general.

PageRank is a simple, robust and reliable way to measureriperiance of
web pages, has a clear interpretation as a markovian pra@essan be computed
in a very efficient way. For these reasons, most of today'snaergial search en-
gines are believed to use it as a part of their ranking functidhere are other
well-known methods for link-based ranking that we do notdss here, such as
HITS [Kleinberg, 1999, Bharat and Henzinger, 1998] or SAUSA&mpel and Moran, 2001];
for a survey of them see [Borodin et al., 2005].

1.3 Our contribution

In this paper we describe general ranking functions tha¢deémn incoming paths
of varying length, and show that PageRank belongs to thss @&functions. We
also provide stream algorithms for computing these rankingtions that use
memory in the order of the number of nodes, and disk spaceeimttier of the
number of edges.



Next, we question how do these functions relate to each dtteer if they
produce similar rankings), and finally we test one of the magkunctions for an
Information Retrieval task (ranking a set of pages).
The rest of this paper is organized as follows: Section 2rie=t the datasets
and experimental framework we use in the rest of the papeatid®e3 introduces
the notion of functional ranking, and Section 4 describe®is# damping func-
tions. Section 5 compares the ranking functions analyiGaid experimentally.
Finally, Section 6 tests the precision of one of the dampimgtions and Section 7
presents our conclusions.
This paper extends the results presented in preliminany fio[Baeza-Yates et al., 2006].

2 Datasets and experimental framework

In the following sections we experiment with several Weladats. We use several
snapshots from the Web obtained by the Laboratory of Web rilguics, Di-
partimento di Scienze dell'Informazignéniversita degli studi di Milano These
data sets are available lattt p: // | aw. dsi.unim .it/). In particular, we used
theuk-2002, i t-2004 andeu-i nt-2005 Web graphs. They correspond to a 18-
million pages crawl of the uk domain in 2002, a 40-million pages crawl of the
.1t domainin 2004 ,it and a 860,000-pages crawl! from theu. i nt domain in
2005.

In addition to real Web data, we also considered a synthetilesree network
produced according to the evolving model described by Kwehak [Kumar et al., 2000]
(a combination of preferential attachment and random Jimkth parameters sug-
gested by Pandurangat al. [Pandurangan et al., 2002]. In the generated graph
the exponents for the power-law in the center part of theidigtons are -2.1 for
in-degree and PageRank, and -2.7 for out-degree. We gedeadt00,000-nodes
graph without disconnected nodes.

To compare ranking orders among different ranking funstiove used Kendall's
T [Kendall and Gibbons, 1990]: this is one of the most widelgduand intuitive
nonparametric correlation indices, that has recentlyivedenuch attention within
the web community for its possible applications to rank aggtion [Fagin et al., 2003b,
Fagin et al., 2003a, Dwork et al., 2001] and for determinlmgdonvergence speed
in the computation of PageRank [Kamvar et al., 2003b]. K#sdais usually de-
fined as the normalized difference between the number ofocdaaces (i.e., pairs
on which the two orders agree) and the number of discordgneegairs on which
the two orders disagree). There are some variants of thisumeathat differ on
the way ties are treated. Kendalt'ss always in the rangé-1,1]: T = 1 happens
if the two total orders induced by the ranks are the same, easer= —1 happens



when the two total orders are opposite of each othef;0 can be interpreted as
lack of correlation.

3 Propagating rank through links

In this section, we introduce the notion faifnctional ranking a general family
of ranking functions that includes PageRank. To descrilgRank formally, we
consider a web graph &f pages. LeAn«n be the adjacency matrix in this graph,
g j = 1iff there is a link from pageéto pagej. This link matrix is hardly ever used
as itis, mainly as it is not normalized and it has “danglingless.

3.1 Normalization

In the Web, creating an out-link is free, so there is an irigeribr web page authors
to create pages with many out-links; this is the reason whetaphor of “voting”
is enforced [Lifantsev, 2000] in which each page has only ‘@moé&e” that has to
be split among its linked pages. This is typically done irkdbased ranking by
normalizing A row-wise: the normalization process means that every wele pa
can only decide how to divide its own score among the pagesadd to, but it
cannot distribute more score than the score it has receiveather way to look at
normalization is that the matrix is turned into the tramsitmatrix of a stochastic
process.

The normalization does not need to give each out-link theeseatue, due to
the evidence that web links have different purposes sucladgating in a multi-
page set, expanding the contents of the current page, pitatianother resource,
etc. [Haas and Grams, 1998]. Also, links within the same cste be considered
self-links and as such do not confer as much authority askebktween different
sites; indeed, there are ranking methods like BHITS [BhanatHenzinger, 1998]
that treat them differently. Other characteristics of §inkuch as the exploration
level at which they appear in Web sites [Liu and Ma, 2005],fdhey are at the
beginning or the bottom of individual pages, or inside aaiardHTML element,
can also be used for non-uniform normalization [Baeza-<rated Davis, 2004].

To simplify our treatment, we will assume uniform normatfiaa, so if a page
hasd out-links, each of those links has a weight gti1but the results of this paper
can be applied to other forms of normalization.

3.2 Dangling nodes

Special attention should be paid to the possible presenoedss with no outgoing
arcs (known as “sinks” in graph theory): in fact, danglingles fail to produce a



row-stochastic matrix, because the rows of dangling nodedileed with zeroes.
Dangling nodes can be dealt with by adding an extra nodegthiakied to and from
all other nodes, or by introducing new arcs from each daggiiode to every node
in the graph [Eiron et al., 2004]. In our analysis, we shaduase that all dangling
nodes have been eliminated already in some way, so that wetdwawe to worry
about their presence. All the algorithms we will present barmodified so that
dangling nodes can be dealt with explicitly and with virtyado additional cost.

Let P be the row-normalized link matrix of the graph with nodes. Page-
Rankr (a) is defined as the stationary distribution of the Markov chwith state
transitions given by the matrix

aP+(1—a)l'v

wherea € [0,1) is a parameter calledamping factor(sometimes also called a
dampening factor), andis a fixedpreference vectothat may represent the inter-
ests of a particular user, or another ranking vector thatésl dior weighting pages.
Note that the above matrix is ergodic (at least, if everyyeafrv is strictly posi-
tive), so it has exactly one stationary distribution. Eveough most of our results
can be easily restated with a non-uniform preference vector the sake of clarity
we shall only consider the uniform preferericéN in the rest of the paper.

As observed in [Fogaras, 2003, Boldi et al., 2005], the Pag&Rectorr (o)
can be written as:

o 1
ria) = (1—or)t;0(tN1P‘,

or in matricial form:

r(a) = (1—0()%10 —aP)t |aP|| < 1.
There is, in fact, an equivalent, very intriguing way of réimg this formula,
mentioned in [Newman et al., 2001] that leads to a conclusiarnilar to those
of [Brinkmeier, 2006]: given a path, that is, a sequence afesdin the graph
p = (X1,X2,...,X), such that nodeg is connected to nodg.,, we define its
branching contributioras follows

branchingp) = Wldk—l

whered; is the outdegree, this is, the number of outgoing arcs, oémpd
Then, the ranking of nodieaccording to PageRank is

1—a)alP

ri(a) = A-aa?

pePath(—,i)

branchingp)



where Patl,i) is the set of all paths into nodeand |p| is the length of patip:

this is becauséP');; contains the sum of the branching contributions of all paths
of lengtht from i to j, as one can easily show by induction to(a path of length

0 and branching 1 is also included in the summation). This @faxpressing the
PageRank of a node is interesting, because it highlight&atiehat the rank of a
node is essentially obtained as a weighted sum of contoiisittoming from every
path entering into the node, with weights that decay expialgnin the length of
the path.

A natural generalization of this idea consists in taking inbnsideration a
rankingR of the general form:

> 1
R =Y dampingt)=1-P'
2 N
or equivalently

R = Z dampingﬂp])%branchin@p)
pePath—,i)
where the damping function is a suitable choice of weights.

We call this form of ranking dunctional ranking as it is parametrized by a
damping function. This generalizes Lifantsev’s [Lifarvts2000] model in which
the damping factor is a matrix afoting trustthat is fixed during the computa-
tion, whereas in our case, this explicitly depends on thatitns. Our damp-
ing function could be even more general by usiD@), a damping matrix in-
stead of dampin@)%l; in this paper we analyze only the latter form. Foga-
ras [Fogaras, 2003] proposed using decreasing link weigdpending on path
lengths in the reverse link graph, and used exponentialtyedsing weights as
in PageRank for finding good Web browsing “starting points'the Web graph.
Another, yet unexplored, possible direction would be tosider damping func-
tions that depend on other properties of the paths (e.g.thehé¢he path passes
through some node out of a certain set) rather than on thejthe

As we have seen, generic PageRank is a functional rankingevihe damping
function

dampingt) = (1—a)a’
decays exponentially fast (something similar was first mred in citation anal-
ysis back in 1953! [Katz, 1953]).

3.3 Characteristic path lengths

In scale-free networks, the distances between pairs of sndallow a Gaus-
sian distribution [Albertetal., 1999]. Analytic estimatis for the average

9



distance of a graph of scale-free network wfnodes include: O(log(n))
[Watts and Strogatz, 1998];O(log(n) /log(np)) in sparse graphs withp
links [Chung and Lu, 2001]; % log(n/z,)/log(z2/z1) wherez, is the average in-
degree, and, is the average number of nodes at distance 2 [Newman et @lL];20
andO(log(n)/log(log(n))) [Bollobas and Riordan, 2004].

The above results apply to different static scale-free astgy not to the evolu-
tion of a particular scale-free network over time. Empirigiaservations in several
different domains demonstrate that given a specific grapliiameter may shrink
over time, even if its number of nodess increasing [Leskovec et al., 2005].

In the static graphs we havee.int, . uk, and.it) we did the following
experiment:; starting from a node picked at random, we fadidvhe links back-
wards and counted the number of nodes at different distarkégsre 5 plots the
average distances found, which appear to be related (giabifomically with the
size of the graph. Figure 6 shows the distribution obtaimethése samples. For
this experiment, we are not counting the pages withoutriksli
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Figure 5: Average distances versus number of nodes in folrdiégphs.

The act of linking a page represents human endorsement andidshot be
affected by the size of the graph. Nor should the act of falgwa link, in terms
of a random surfer, be affected. However, an algorithmpiopagatingthis en-
dorsement through links for computing a ranking functiordseto account for the
typical distances involved; this requirement is typicalairsituation where local
properties have a global impact: for example, the additiba single arc could
drastically reduce the diameter of a graph.

In most cases, researchers have used exponential damgimdpagie 0.85 or
0.90 in graphs that are much smaller than the full Web (cangegphs, social
networks, e-mail graphs, etc.), meaning that a potentralligh larger fraction of
the nodes contributed towards link ranking. We consider itha smaller graph,
the damping function should decay faster.

10
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Figure 6: Distribution of the average number of nodes at tatedistance from a
given node, in three Web samples.

If graphs of different sizes show different path lengthsatvis the effect of
this in the ranking calculation? Let's suppose that for @graith N; nodes it is
found, by experimental or analytic means, that a good paemier PageRank is
a;j. Now, we would like to have a good parameter for a graph with the same
properties, except that the size of the new grapipisc N;.

One possible approach, remaining consistent with what we tane so far, is
to view the sum of the weights up to the average path lengttigeairaphsl(;, L,)
as having to be similar in order for both rankings to behave similar way. If we
take this approach, the solution is:

L (o= = 1o (o)
+1

@ = (@)

@ ~ (@)%

An example that can be put into practice is the following: 'sletonsider a
web graph withN; = 11.5 x 10° pages (the size of the full Web estimated by
[Gulli and Signorini, 2005]), and another graph with omMllg = 50 x 10° pages
(the size of the Web of a large country); the second graphughiy 3 orders of
magnitude smaller.

If it is shown empirically thato; = 0.85 is a good value for the PageRank
parameter for the whole Web, thej = 0.81 should have a similar behavior in the
50-million page set, which is natural as the path lengthshaegter. If the subset
of web pages were even smaller, for instade= 10° pages (the size of the web
of a large organization), them; = 0.76, and for smaller graphs d§ = 10° nodes,
a5 =0.72. We recommend using these values for graphs that are myacable
in size to the full Web graph.
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4 Damping functions

First, we show which class of damping functions generatdsdeéined functional
rankings. As shown in [Brinkmeier, 2006, Corollary 2.4]r &very pair of nodes
and j, and for every length

branchingp) < 1.
pePath(i,]),|pl=t

A more general property holds:

Theorem 1. For every node i and every length t

branchingp) = 1.
pePatt(i,—),[p|=t

Proof. By induction ont. Fort = 0O, there is only one path fromof length 0,
and its branching is 1. For the inductive step the above sgme can be rewritten
by observing that, if has outdegree, every path fromi of lengtht 4+ 1 is the
concatenation afwith a path of length from an out-neighbor of

branchingp) =
pePath(i,—),|p|=t+1

L z branchingp) = z — =1

jiI=j d; pePath(j,—),|p|=t jiI=j

As a consequence, to guarantee that the functional rankiweli-defined and
normalized (i.e., that rank values sum to 1) we need:

N
Zl z dampind| p])1 branchingp) = 1
i=1pePath—,i) N

that is

Zjdamping{t)l Z branchingp) = 1.
t= pePatrff’f)’|p|:t

Using Theorem 15 cpai— -y pi—t Pranchingp) = N, so the latter equality is
equivalent to

dampingt) = 1.
2

12



Hence, every choice of the damping function such that the gludampings is 1
yields a well-defined normalized functional ranking. Hoeewnot all choices are
equivalent, so we have to find out which functions generatietbenkings. Since
a direct link should be more valuable as a source of eviddmme & distant link,
we focus on damping functions that are decreasing, dhe length of the paths.
We also focus on normalized ranking functions, as they aseet combine with
other signals to produce a combined ranking for an object.

Computation. For calculating functional rankings, we use the generab-alg
rithm shown in Figure 7; the next sections provide detailtherinitialization, stop
condition and iteration steps for each calculation.

Require: N: number of nodesy: preference vector
1: fori: 1 ... Ndo{lInitialization}

2. S[i] — R[i] — START

3: end for

4: for k:1... oo do{lteration step

5. if STOPthen

6: break

7. endif

8: Aux «— 0

9: fori:1... Ndo{Follow links in the graph
10: for all j such that there is a link fromto j do
11: Aux[j] < Aux[j] + R[i)/outdegresi)

12: end for

13:  end for

14:  fori:1... Ndo{Add to ranking valu¢
15: R[i] < Aux[i] x DAMP(k)

16: S[i] + S[i] + R[]

17:  end for

18: end for

19: return S

Figure 7: Template algorithm for computing a functional gémg. START, STOP
and DAMP (k) differ for each functional ranking.

13



4.1 Linear damping

Let's start by considering a simple damping function such as

29 |
dampindt) = ('-)('-”) oL

that is, a damping function that decreases linearly wittadise, and reaches zero
at distancd.. The trivial casd. = 1 gives a uniform ranking, anld= 2 is ranking
by in-degree, as in the latter case all paths of lerxgthare not considered.

From the definition,

R = idampith)th:iz(L_t)th
& & LL+1)

2 L-1 )
= L(L+1)Vt;(L_t)P

— LR PP L

provided that| — P)? is not singular.

An advantage of this type of ranking is that only the first fewels are taken
into consideration, so the number of iterations is fixed. fEti®nale for this is that
after a certain distance the information given by links carlisregarded.

Computation. For computing this functional ranking, we can define the fol-
lowing sequence:

2
o - _Z_
R L1
L—k—1)
R(k-l—l) — ( RkP .
(L=K)

The functional ranking with linear damping ¥ 5 R, For computing this rank-
ing, the generic algorithm shown in Figure 7 can be used,: with

START : /i]/(L+1)
STOP : k=L
DAMP(K) : (L—K)/(L— (k—1))

14



4.2 Exponential damping: PageRank

As we already noted, PageRank can be seen as a functionahgankere the
damping function decays exponentially:

dampingt) = (1—a)a'.

Given that longer paths are of lower importance in the catouh of PageRank, it
could be approximated by using only a few levels of links. @ién et al., 2004],
it is shown that by using only the nodes at distance 1 fromgetarode (equivalent
to linear damping with. = 2), PageRank values can be approximated with 30%
of average error. Using nodes at distance 2, the averagedeas to 20% and at
distance 3, to 10%. After that, there are no significant imeneents by adding a
few more levels, and the cost (the number of nodes to be eqylis much higher.

Computation. Since PageRank is the principal eigenvector of the modified
graph matrix, it can be easily approximated by the iteraftegver Method algo-
rithm, as suggested by Pageal. in their original paper [Page et al., 1998]; this
iterative algorithm gives good approximations (both inmaand with respect to
the induced node order) in few iterations, even though agevee speed and nu-
merical stability decay when gets close to 1 [Haveliwala and Kamvar, 2003b,
Haveliwala and Kamvar, 2003a]. Other methods to computeRagk have been
proposed, some of them using techniques for the solutiopstésns of linear equa-
tions, some other concentrating on some specific featuréseofveb as a graph
that determine forms of locality in the computation of PageR(see, for exam-
ple, [Page et al., 1998, Haveliwala, 1999, Golub and Gréi®42 Lee et al., 2004,
Kamvar et al., 2003c, Kamvar et al., 2003a]).

Of course, the generic algorithm shown in Figure 7 can be, wsitil:

START : (1—a)Vi]
STOP : convergence
DAMP(k) : «a

4.3 Quadratic hyperbolic damping: TotalRank

Recently, a ranking method called TotalRank [Boldi, 200&g been proposed. The
method aims at eliminating the necessity for an arbitranampeter by integrating
PageRank over the entire rangeaf If r(a) is the vector of PageRank, then
TotalRank is defined as:

T :/Olr(cx)dcx .

15



T can be written as:

1 1> 1
r(a)da = = /1—0( at1-Pda
| r@ WAL
12 1

-y - 1.p

Nt;)(t+1)(t+2) '

where the first equality is obtained applying Theorem 1.2[Rofin, 1986].
By using the definition of the logarithm of a matrix:

we can write TotalRank as:
T=P11+(1-PHIn(l-P))

provided thalP is not singular andP # .

TotalRank is a weighted sum of the scores associated witis gt varying
lengths, in which the weights are hyperbolically decregsin the lengths of the
paths. In other words, TotalRank is a functional rankingwdiamping function:

1 1 1
t+1)(t+2) t+1 t+2°
and it is well defined sincg;> ,dampingdt) = 1.
Computation. It is known that the cost of calculating TotalRank is the same

the cost of calculating PageRank via the Power Method [Batldi., 2005], even
though some more iterations are required to obtain the saeuéson.

dampingdt) =

4.4 General hyperbolic damping: HyperRank

TotalRank is part of a more general family of weighting scherfor paths of dif-
ferent lengths that can be approximated using:

1 2 1
~ NZ(B) t; (t+1)P

Again, this way of ranking follows the general scheme, withmghing function
chosen as

1-P.

s(B)

1

dampingdt) = m .

16



Here, we are using Riemann’s zeta functi@fB) = s> ,t=P for normalization,
and we nee@ > 1 for it to converge. Note that whgh= 2 we get weights similar
to those of TotalRank, in which theth coefficient is ¥(t + 1)(t + 2) whereas here
itis 1/2(2)(t +1)2.

A meaningful choice fof should be done considering the distribution of paths
of different lengths in a scale-free graph. A lagén PageRank, or a smglin
HyperRank, means increasing the effect of longer pathsairstore.

Computation. Let us define a vector sequeriRé) as follows:

1
RO — _—
NZ(B)
k+1\P
Rk — (=) RKWp,
k+2

It is easy to see thay oRM = s(B), becauseR™ = 1/(N-Z(B)(k+1)P))1-
Pk: this observation allows us to use the generic algorithmigéife 7 with the
following parameters:

START : V[i]/T(B)
STOP : convergence
DAMP(K) : (k/(k+1))P

Note that convergence speed is much slower than ordinargRRatk, especially
whenp is close to 1, the norm of theth summand being bound by (i + 1/k)P.
Interestingly enough, though, convergence speed is rabtoif (3 is sufficiently
large.

4.5 An empirical damping

An empirical damping function would consider how much thieigaf an endorse-
ment decreases by following longer paths in the real webhgrdjhis cannot be
known exactly, but we can attempt to measure it indirecthgd3 which are linked
to each other share a greater degree of similarity than pegesen at random
[Davison, 2000]; evidence from topical crawlers [Srinemast al., 2005] shows
that when doing breadth-first exploring, the topic “drif&s the distance increases.
On the same line of thought, we propose to use the decreaset similarity as an
approximation to an “empirical” damping function. In [Merar, 2004] it is shown
that text similarity and link distance are anti-correlatgxto 4-5 links.
In order to assess the correlation between link-distandesanilarity, we per-

formed the following experiment. we considered a web graphesponding to
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a partial snapshot of theuk domain with 18 million pages, and sampled 200
nodes at random. For each sampled node, we followed linkiewzads to ob-
tain nodes at a minimum distance of 1, 2, 3, 4, or 5 links. Thea,sampled
12,000 pairs at each minimum distance at random, and coohplgdr similari-
ties with the original nodes. Similarity was measured usheynormalization of
TF.IDF [Baeza-Yates and Ribeiro-Neto, 1999], without st@ng or stop-word re-
moval.

0.7

Average text similarity
o o o o
w N ol »

0.2

Link distance

Figure 8: Link distance vs. average text similarity in a skngh 18 million pages
from the. uk domain. A link distance of one means direct linking. The &Rrii-
larity appears to decrease linearly in the first few levels.

The resulting averages are shown in Figure 8, with standavéhtion error
bars. Text similarity clearly decreases with distance, iarsbme applications the
empirical distribution of text similarity versus distanceuld be used as an “em-
pirical” damping function. Different measures of text dawity can yield different
distributions; for instance [Wu et al., 2004] uses the nundbeepeated words and
phrases between pages and obtains a faster decrease arigimur results show
that in our data set, a linear damping with= 8 or L = 9 approximates better the
decrease of text similarity with distance than an expoaédamping as suggested
in [Menczer, 2004]. Text similarity does not seem to deczezgonentially fast,
so there is n@ priori reason to prefer exponential damping (PageRank) over other
functional rankings.
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An observation in [Menczer, 2004] is that for different coommties, the link
structure could be different. For instance, academic Weagepanight be better
connected than commercial pages, so an empirical dampnugidn should mea-
sure first which is the correlation of link distance to texhiarity in the specific
collection we want to rank.

5 Comparing damping functions

A comparison of the damping functions described in the previsection is shown
in Figure 9: of course, hyperbolic damping functions decsyngptotically more
slowly than exponential damping, but note that for shorhgdie latter may dom-
inate the former in many cases.

0.25 ‘ ‘ ‘ ‘
PageRanki=1/2 ——
PageRanki=1/3 ——

0.20 PageRanki=1/4 —=—

TotalRank, HyperRanR=2 —=—— ]
HyperRank3=3 -«

HyperRank3=4 -+
0.15%

Weight

0.10%

0.05 P

0.00 e S By . [ y
1 2 3 4 5 6 7 8 9 10

Length of the path (t)

Figure 9: Weights given by the different damping functioos $ome values afi
andp.

We can empirically observe that the ranking ordering preduby different
functional rankings are different. Nevertheless, in th@st®n, we show that the
ranking order produced by one functional ranking can be@gprated with great
precision by carefully choosing the parameters. This appration has to be done
mostly by considering the weight of the first few levels okbn

The possibility of approximating the order of one functibmanking with
another is interesting, for instance, to approximate Pag&Rusing LinearRank
(given that the latter uses a fixed number of iterations),yoafother functional
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ranking in the future. In this section we also include appr@tions of PageRank
with TotalRank and HyperRank for completeness.

5.1 Approximating PageRank with TotalRank

It has been observed experimentally that the rank coroel#iendall’st) between
TotalRank and PageRank is maximal wteer: 0.7 [Boldi, 2005]; the maximum
value fort is over 095, so for that specific choice of PageRank and TotalRank
induce almost equivalent ranking orders.

We now want to approach the same problem in an analytic fastedoe more
exact, we aim to study the difference between TotalRank ag@&Rank by calcu-
lating the difference between their respective dampingtfans:

. 1
dampinggarandt) = m

dampin@ageRan{ﬂ)(t) = (1_ G)at :

As they are normalized, both damping functions have the samenation over the
entire range of. Our approach is to consider the summation of their diffeesrup

to a maximum length for a path. As the two functions are desimgathe difference
in the first levels makes most of the difference in the rarkinfy is the maximum

path length we are interested in, we aim at minimizing thre:su

¢
t;<m—(l—a)at> =0T

The minimum absolute value is 0, and it is obtained wheés equal to

on 1 logt log? ¢
0= g =1 o)

Figure 10 showsx*(¢) as a function of. Recall that for the World-Wide Web
graph, the average length of a path between two nodes, whath axists, has been
estimated in about 16 [Broder et al., 2000] or 19 [Albert etE999], but clearly
today is over 20. Now, in the range of path lengths betweemi=28 the value of
a*(¢) parameters that minimizes the difference between the expally decay-
ing weights of PageRank and the hyperbolically decayingtsiof TotalRank is
roughly 085. Note that 0.85 is also the most typically used value ferdamping
factor, so this merits further study.
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Figure 10: Left: difference of the sum of the weights for was combinations of
a and/. Right: a*(¢) for minimizing the difference of the sum of weights between
PageRank and TotalRank.

5.2 Approximating PageRank with HyperRank

Now we want to approximate the weights of:

l-a g
ra)==——Y%a'P,
V2

using the weights of:

1 2 1
s(B) = NZ(B) t; (t+1)BPt

1.0

k] By
e Q 0.9 SN 3\
O o s e e
= > = 2 B
N St 07 T —
gg 0.6 -
Or 0
82 o5 o :
el EE 04 -
i £3
’ E  03r Max path length=25—— 7
3 <] 02k Max path length=20-->---
=] . Max path length=15-#--
. N : . . IS 0.1F Max path length=10--«
B 555 10 15 ) 5 00 Max path length=5---s--- )
Length T 15 2 25 3 35 4

Exponenf3

Figure 11: Left: best for minimizing the difference of the sum of weights be-
tween PageRank and HyperRank, for various parameter catiins. Right: 2-D
view of the same plot.
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and we proceed again by considering paths up to a certaithteng

‘ 1
2 <z<rs><t rp Ao )

The minimum can be zero, and it is attained at:

o B)_\f/l_i L1
P\l

Thea that minimizes the difference of weights for different vedwf and of the
maximum path lengthéis shown in Figure 11. In the case [df= 2, for instance,
for path lengths up to 10 to 20, the besis between (r5 and 085.

5.3 Approximating PageRank with LinearRank

For approximating the damping function of PageRank withdaeping function
of LinearRank, we consider the summation of the differengeto a certain path

length. If¢ < L:
e 2L-t)
2, <(1 e L(L+1)>

L1 B ‘
t; ((1— a)a' — E((II:Jr tl))> +tZL(1— a)a

We will assume that < L, so the evaluation of the difference between the two
rankings is done in an area where both rankings have nonvatues. The. that
minimizes the difference for a given combinationco&nd/ is

And if /> L:

(20+ Dot + 14 /(1+ a2+ 40(0 + 2)al+L
2(1—al+l)

L(a,f) = ¢+
- £+1+O<€a(“1>/2>

and we have plotted it for different valuesmfand/ in Figure 12.

5.4 Experimental comparison of ranking orders

In this section, we present experimental results aboutithéasity between the
ranking orders induced by some of the functional rankingsulised in the previ-
ous sections. To perform the experiments, we used data fretd K. Web graph.
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Figure 12: Left: best for minimizing the difference of the sum of weights between
LinearRank and PageRank, for various parameter combir&tiRight: 2-D view
of the plot on the left.

Figure 13 shows how PageRank compares with HyperRank fawmusapairs
of a and. In the limit a, — 1 both rankings are equivalent, and they remain
similar in a large region of the parameter space.

0.9

‘ Actual optimuh
0.8 Predicted optimum with length=5--=-— 1

0.6

0.5

0.4

o that maximizes Kendall's

03 :

0.2

0.1

15 2 25 3 35 4
Exponenf3

Figure 13: Comparison (using Kendallt$ between PageRank and HyperRank,
with various damping parameters in the U.K. web graph. Thamym predicted
in the analysis witid =5 is very close to the real one.

In this figure, we can see that the rankings obtained with Hyaek and Page-
Rank can be almost equivalent (Kendali's> 0.95). Furthermore, the analysis
shown in section 5.2 which only considers paths of lengtks tean 5, provides a
very good approximation for the optimal combination of paeders. This means
that in fact, the difference in the damping functions in tinst fiew levels is crucial.
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The exponent$ required for giving a good approximation of PageRank are
very small wher > 0.7, limiting the practical applicability of HyperRank, as it
does not converge more quickly than PageRank.

This comparison was corroborated by an analogous seriexpafrienents
where we used another (dis)similarity measure propose#agih et al., 2003b]:
this measure, calledtersection metricis essentially an averaged normalized mea-
sure of the symmetric difference between the twokaets according to two given
rankings; the intersection metric evaluates to 1 when théists are disjoint. To al-
low comparison with Kendall’s, we choose to graphically represent in Figure 14
one minus the intersection metric; the choicekds of course relevant, but the
results are uniform for sufficiently larde

Figure 14: Comparison (using tdpitersection metric) between PageRank and
HyperRank, with various damping parameters in the U.K. walplgy, fork = 1000
andk = 100000.

As far as LinearRank and PageRank are concerned, long pathi@ea
should be considered to obtain a sufficiently similar ragkas shown in Figure 15.
In the range ot = 0.8...0.9, paths of roughly 10 to 20 links should be considered
to obtain rankings that are almost equivalent.

The predicted optimum given in section 5.3 witk= 5 (i.e., considering only
the summation of the differences between both damping ifumetup to paths of
length 5) is very close to what was obtained in practice. d~er 0.8, calculating
LinearRank withL = 10 (which means the same number of iterations) gives
0.98; for a = 0.9, calculating LinearRank with = 15 also givest > 0.98. In
both cases, the ranking order of PageRank is approximatételyanking order of
LinearRank with very high precision. (A similar compariseas performed using
intersection metric instead, obtaining quite similar fesy

As a final remark, observe that (as shown in Figure 16) evengtind.inear-
Rank is a good approximation to PageRank, stopping Pagefengutation after
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Figure 15: Comparison (using Kendallty between PageRank and LinearRank
in the U.K. web graph, with various damping parameters. Agtie predicted
optimum with/ = 5 is very close to the actual optimum.

¢ iterations usually gives a better (in the sense of Kenda)l'approximation to
real PageRank than LinearRank parametrized,Bspecially for smalbr, where

convergence is fast. Whether this observation could bendgte to the precision
of both ranking functions for Information Retrieval tasksa problem that merits
further experiments and investigation.

1.00

0.95

0.90

0.85

0.80 -

LinearRank (5 iter.) vs PageRank——
__PageRank (5 iter.) vs PageRank>—

0 0.2 0.4 0.6 0.8 1
a

0.75

Figure 16: Comparison (using Kendallty between PageRank stopped after 5
iterations and LinearRank with=5 in the U.K. web graph, with various damping
parameters.

5.5 Comparison with in-degree

In this section, we study the behavior of the ranking fumiéor different values
of their parameters.
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In this section, we are using data from the&k Web graph and a 8,500-nodes
synthetic graph. We first measured the variance of the vdhoas the ranking
function, as we consider that a high variance is good in aingnkinction as the
relative values differ more. We also measured the reldtiprisetween the ranking
function and in-degree for different values of the paramsateterms of correlation
coefficient and ranking orders (Kendalt’s The results are shown in Figure 17.
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Figure 17: Variance of PageRank, and its relationship witdegree in terms of
correlation coefficient and Kendalliscoefficient, for varying values of the param-
etera. Top:. uk web graph; bottom: synthetic graph.

The variance is higher asincreases. As far as the relationship with in-degree
is concerned, for company home pages, it has been obseratthéhlogarithm
of the in-degree is correlated with PageRank [Upstill et20003]. Our results are
consistent with this observation. Not surprisingly, usihg generative model the
correlations are higher. We observe a maximum correlatien-a0.7 in the syn-
thetic graph and at = 0.5 in the web graph. We also notice that the correlation
drops significantly as gets larger, because a largeneans that longer paths have
an effect in the calculation; note, however, that this plnesiocon does not signifi-
cantly affect the correlation coefficient that is still véayge.

A high correlation between PageRank and in-degree is ban fhe point of
view of a search engine, because it makes link-spam easigarticular, as the cor-
relation coefficient is higher in theuk web graph near.8, if we choosex close
to this value we are helping link spammers. Note, howevet, #hhigh correla-
tion was foreseeable because, as shown in [Chen et al.,,28@&t approximating
PageRank with just only 1 level of links gets 70% of accuracy.
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The behavior of the Kendall’s coefficient which measures the similarity be-
tween ranking orders is the opposite than the one observib@ ireal graph. This
also happens for HyperRank: in Figure 18 we made the sameuneeasnts for
this functional ranking, and the results were consistdrg (fraph seems inverted
because a low value @ has the same effect as a high valueooflonger paths
have more importance in the calculation).

Variance Correlation coefficient Kendall'st
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7.00e-12 ! 1 078 0.53
6.00e-12 | 1 : 0.52
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4.00e-12 + 1 0.76 0.50
3.00e-12 1 0.49
2.00e-12 : 1 0.75 0.48
1.00e-12 i 1 0.74 0.47
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Figure 18: Variance of general hyperbolic rank for someesif3, and its relation
with in-degree. Experiments have been performed on. thegraph (top) and
synthetic graph (bottom).

The differences in the behavior of the ranking order in thettsstic graph
might be explained by the fact that the generative model weuaing does not
capture some of the properties which might be relevant ®rainking order under
a functional ranking such as the clustering coefficient.0Atkhe synthetic graph
is assortative (highly linked pages are mostly linked teeothighly linked pages),
while the real web graph is disassortative (most of the rmigh of highly linked
pages have small in-degree).

6 Experimental evaluation of precision
Finally, we would like to determine if a damping function tidoes not decay

exponentially as PageRank does still induces a rankingiumthat is appropriate
for information retrieval tasks.
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With this aim in mind, we used the WebTREC Gov2 collectiorThis col-
lection consists of about 25 million documents obtainedd@4£from a crawl of a
large subset of thegov (U.S. government) domain. The most important character-
istic of this collection is that it includes relevance judgmis for a set of information
retrieval tasks.

We picked 50 of them at random and manually created keywcedegifor this
evaluation, following the policy used in the standadihocTREC tasks. We then
used the Managing Gigabytes for Jarg4| ) framework to select from the collec-
tion 1000 pages matching each query according and we reeattlee query results
according to the scores resulting from different link-lwhssnkings strategies.

At this point, we shifted our attention to the LinearRankkiag that uses lin-
ear damping, to see if LinearRank with a small number of itena can provide a
ranking that is competitive with PageRank. On this grapb,RhgeRank calcula-
tion took 39 iterations to converge on the L1-norm of theal#hce between two
iterations to less than 16.

For the evaluation we computed the standard precision atall nmeasures
[Baeza-Yates and Ribeiro-Neto, 1999] and averaged theass@il queries. Pre-
cision at result numbeN (also denoted as “precision Bt’ or simply “P@N")
is the fraction of correct results in the firlstresults returned by the system; the
“correct” results in our case are taken from the quality sssents included in this
reference collection. This is shown in Figure 19 (a).

Another indicator that is usually measured is recall, whctihhe proportion of
correct results which the system finds among the total nurabeorrect pages.
It is customary to interpolate the precision for differeatall levels, and this is
shown in Figure 19 (b).

Of course using link ranking improves the precision overartking at all, and
PageRank and LinearRank behave very similarly. For instaihgve compare the
PageRank (that requires 39 iterations) with LinearRanksséce 5 (that requires
5 iterations only) we observe that the precision of the fitnent is 8% better for
PageRank, of the first five elements is 17% better for PageRautKor the first
ten elements it is 2% better for LinearRank. From that pougroboth rankings
are roughly equivalent.

This means that LinearRank at distance 5 can provide a léy@kgision for
information retrieval tasks that is quite similar to thatRdgeRank. This is ap-
plicable in contexts where link-based ranking cannot bepded in advance, but
a computation at query time is necessary. For instanceptusrs if we need to
analyze links over a sub-graph that is generated at quepy tim

LAvailable from the University of Glasgow for research pwses. For inquiries about this collec-
tion, seehttp://ir.dcs. gl a. ac. uk/test _col | ections/gov2-summary. htm
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(a) Precision@N (b) Interpolated precision
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Figure 19: Evaluation of LinearRank and PageRank in the VRET collection.

7 Conclusions

In this paper we have defined a broad class of link-basednigratgorithms based
on the contribution of damping factors along all the diffarpaths reaching a page.
We introduced four particular damping decays: linear, egmbial, quadratic hy-
perbolic and general hyperbolic, where exponential is\vedeit to PageRank and
quadratic hyperbaolic to TotalRank.

We studied the differences and similarities between thaskimg algorithms,
and we found that functional rankings using different damgpiunctions can (if
the parameters are chosen carefully) provide similar orgsr LinearRank can be
used for calculating a ranking that is as good as PageRariR fiasks. Also, the
parameters for the damping functions depend on the chasdictgoath lengths in
the graph, which are known to grow sub-logarithmically oa size of the graph.

More work needs to be done in order to find other damping fanstithat
compute rankings similar to PageRank but are easier aner fastompute. We
use a global ranking similarity, but another measure coalthb ranking similarity
in the top 20 results of real queries. In this setting ourltesan change, so future
work will include this variation.

Because of their high cost, link-based ranking methodsitivalve iterative
calculations at query time are probably not used by largéessearch engines at
present, but the functional ranking with linear damping akhive have presented
can provide a good approximation with few iterations. Meexp the approach
we have taken could be also applied to multivalued rankingctions such as
HITS [Kleinberg, 1999] and topic-sensitive PageRank [Hisweda, 2002] to ob-
tain, for instance, a method for approximating the hubs anlcgity scores using
less iterations and a linear damping function.
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Our approach also helps to understand how easy or difficidttid collude
many pages to modify the ranking of a given page. Clearlyetlzee many dif-
ferent factors: path lengths, damping function, branchdegrees, and number
of colluded pages. The graph structure of the collusion affibct those factors
and we plan to analyze them. In particular, under the assamfhat is easier
to “spam” closer links, PageRank damping is more affecteccdijusion than
the rest of the damping functions presented here. This igidariher studied
in [Becchetti et al., 2006] by using a truncated exponertdahping function for
spam detection.

We have use damping coefficients that are described by aesifunpttion, but
we do not need this restriction. We could learn the best aieffiis for an ad-hoc
damping function from a given Web collection. The aim, irstbase, would be
to optimize the precision in a sample of queries and theaveait answers, or to
accurately filter spam given a sample of spam pages.
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