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ABSTRACT
This paper describes a technique for automating the detec-
tion of Web link spam, that is, groups of pages that are
linked together with the sole purpose of obtaining an unde-
servedly high score in search engines. The problem of Web
spam is widespread and difficult to solve, mostly due to the
large size of web collections that makes many algorithms
unfeasible in practice.

For spam detection we apply only link-based methods,
that is, we only study the topology of the Web graph with-
out looking at the contents of the pages. We compute Web
page attributes applying rank propagation and probabilistic
counting over the Web graph. These attributes are used to
build a classifier that is tested over a large collection of Web
link spam. After ten-fold cross-validation, our best classifier
can detect about 80% of the spam pages with a rate of false
positives of 2%. This is competitive with state-of-the-art
spam classifiers that use content attributes, and is the first
automatic classifier that achieves this precision using only
link data.

1. INTRODUCTION
The Web is nowadays both an excellent medium for shar-

ing information, as well as an attractive platform for deliver-
ing products and services. This platform is, to some extent,
mediated by search engines in order to meet the needs of
users seeking for information. Given the vast amount of in-
formation available on the Web, it is customary to answer
queries with only a small set of results (typically 10 or 20
pages at most). Search engines must then rank Web pages,
in order to create a short list of high-quality results for users.

The Web contains numerous profit-seeking ventures, so
there is an economic incentive from Web site owners to rank
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high in the result lists of search engines. All the decep-
tive actions that try to increase the ranking of a page in
search engines are generally referred to as Web spam or
spamdexing (a portmanteau of “spam” and “index”).

A Web search engine must consider that “any evaluation
strategy which counts replicable features of web pages is
prone to manipulation” [22]. In practice, such manipulation
is widespread, and in many cases, successful. The authors of
[9] report that : “among the top 20 URLs in our 100 million
page PageRank calculation (. . . ) 11 were pornographic, and
these high positions appear to have all been achieved using
the same form of link manipulation”.

In general, we want to explore the neighborhood of a page
and see if the link structure around it appears to be artifi-
cially generated with the purpose of increasing its rank. We
also want to verify if this link structure is the result of a
bounded amount of work, restricted to a particular zone of
the Web graph, under the control of a single agent. This im-
poses two algorithmic challenges: the first one is how to com-
pute simultaneously statistics about the neighborhood of
every page in a huge Web graph, and the second is what to
do with this information once it is computed, and how to
use it to detect Web spam and demote spam pages.

In this paper we adapt two link-based algorithms, and
apply them for detecting malicious link structures on large
Web graphs. The main contributions of this paper are:

• We introduce a damping function for rank propaga-
tion [1] that produces a metric that helps in separating
spam from non-spam.

• We present an improved approximate neighborhood
counting algorithm [23] for the application of detecting
link spam.

• We describe an automatic classifier that uses only link
attributes, without looking at the content of the pages,
and achieves a precision that is equivalent to that of
the best spam classifiers that use content analysis.

Our algorithms are tested on a large sample of the .uk do-
main where thousands of domains have been inspected and
manually classified as spam or non-spam domains. Con-
cerning the algorithmic contribution of our work, we show a
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version of approximating counting that can be seen as a spe-
cific instance of rank propagation. This sheds new light and
greatly simplify the method proposed in [23], and suggests
that the idea of rank propagation may be adopted as a gen-
eral framework for computing several relevant statistics in
large networks. All our algorithms also work in a streaming
model of the Web graph. Every computation is performed
by repeating a limited number of times a sequential scan of
data stored in secondary memory [17]. We also provide a
framework in which the algorithms use an amount of main
memory in the order of the number of nodes, while one that
requires memory in the order of the number of edges may
not be feasible. In conclusion, our methods are scalable to
deal with Web graphs of any size.

In [4] we study several combinations of the algorithms pre-
sented in this paper with other link-based metrics, showing a
detailed breakdown of the different techniques and the clas-
sification accuracy achieved in Web spam detection. Here we
focus on the description and analysis of the two main algo-
rithms (Truncated PageRank and Probabilistic Counting)
and for completeness also include results on their general
performance on the spam detection task.

This paper is structured as follows. In section 2, we intro-
duce the framework for the analysis, and present a charac-
terization of the pages we want to detect. In section 3, we
present a rank-propagation algorithm that calculates a link-
based score that disregards paths whose length is below a
certain threshold, so that pages participating in a link farm
do not contribute so much to the ranking of the target page.
In section 4, we show how to use a variant of the approx-
imate neighborhood counting method (ANF) presented in
[23] to estimate the number of “supporters” of a given page
at different distances.

2. CHARACTERIZING SPAM PAGES
In [15], spamming is defined as “any deliberate action

that is meant to trigger an unjustifiably favorable relevance
or importance for some web page, considering the page’s true
value”. A spam page is a page that is used for spamming or
receives a substantial amount of its score from other spam
pages. Another definition of spam, given in [24] is “any
attempt to deceive a search engine’s relevancy algorithm” or
simply “anything that would not be done if search engines
did not exist”.

There are several techniques for spamming the index of a
search engine, or spamdexing. A spam page may contain
an abnormally high number of keywords, or have other text
features that make content-based spam detection [21,
8] possible. This is not always the case, for instance, in
Figure 1 we show a spam page that looks mostly normal
and includes only a few out-links.

The page in Figure 1 is part of a link farm. A link farm
is a densely connected set of pages, created explicitly with
the purpose of deceiving a link-based ranking algorithm [27,
2]. In [27], this is called collusion, and is defined as the
“manipulation of the link structure by a group of users with
the intent of improving the rating of one or more users in
the group”.

This is the kind of pages we are interested in. The targets
of our spam-detection algorithms are the pages that receive
most of their ranking by participating in link farms. A page
that participates in a link farm may have a high in-degree,
but little relationship with the rest of the graph. In Figure 2,

Figure 1: Sometimes a spam page can not be easily
detected by content-based analysis.

Figure 2: Schematic depiction of the neighborhood
of a page participating in a link farm (left) and a
normal page (right). A link farm is a densely con-
nected sub-graph, with little relationship with the
rest of the Web, but not necessarily disconnected.

we show a schematic diagram depicting the links around a
spam page and a normal page. Link farms can receive links
by buying advertising, or by buying expired domains used
previously by legitimate Web sites.

We must note at this point that there are some types of
Web spam that are not completely link-based, and it is very
likely that there are some hybrid structures combining link
farms (for achieving a high link-based score) and content-
based spam, having a few links, to avoid detection. In our
opinion, an approach mixing content features, link-based
features and user interaction (e.g.: data collected via a tool-
bar or by observing clicks in search engine results) should
work better in practice that a pure link-based method. In
this paper, we focus on detecting link farms, but there will
be cases in which this type of structure does not exist.

We view our set of Web pages as a Web graph, this is,
a graph G = (V, E) in which the set V corresponds to Web
pages in a subset of the Web, and every link (x, y) ∈ E
corresponds to a hyperlink from page x to page y in the
collection. For concreteness, the total number of nodes N =
|V | is in the order of 1010 [13], and the typical number of
links per Web page is between 20 and 30.
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Figure 3: Distribution of the fraction of new sup-
porters found at varying distances (normalized), ob-
tained by backward breadth-first visits from a sam-
ple of nodes, in two large Web graphs.

Link analysis algorithms assume that every link represents
an endorsement, in the sense that if there is a link from page
x to page y, then the author of page x is recommending page
y. Following [5], we call x a supporter of page y at distance
d, if the shortest path from x to y formed by links in E has
length d. The set of supporters of a page are all the other
pages that contribute towards its link-based ranking.

As suggested by Figure 2, a particular characteristic of a
link farm is that the spam pages might have a large number
of distinct supporters at short distances, but this number
should be lower than expected at higher distances.

In Figure 3 we plot the distribution of distinct support-
ers for a random sample nodes in two subsets of the Web
obtained from the Laboratory of Web Algorithmics. (All
the Web graphs we use in this paper are available from the
Dipartimento di Scienze dell’Informazione, Università degli

studi di Milano at http://law.dsi.unimi.it/).
We can see that the number of new distinct supporters

increases up to a certain distance, between 8 and 12 links
in these graphs, and then decreases, as the graph is finite
in size and we approach its effective diameter. We expect
that the distribution of supporters obtained for a highly-
ranked page is different from the distribution obtained for a
lowly-ranked page.

To observe this, we calculated the PageRank of the pages
in the eu.int (European Union) sub-domain. We chose this
domain because it is a large, and an entirely spam-free sub-
set of the Web. We grouped the pages into 10 buckets ac-
cording to their position in the list ordered by PageRank.
Figure 4 plots the distribution of supporters for a sample
of pages in three of these buckets having high, medium and
low ranking respectively.

As expected, highly-ranked pages have a large number
of supporters after a few levels, while lowly-ranked pages
do not. Note that if two pages belong to the same strongly-
connected component of the Web, then eventually their total
number of supporters will converge after a certain distance.
In that case the areas below the curves are equal.

As shown in Figure 2, we expect that pages participating
in a link-farm present anomalies in their distribution of sup-
porters. A major issue is that computing this distribution
for all the nodes in a large Web graph is computationally
very expensive. A straightforward, computationally unfea-
sible, approach is to repeat a reverse breadth-first search
from each node of the graph, and marking nodes as they are
visited [18]. A possible solution could be to compute the
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Figure 4: Distribution of the number of new sup-
porters at different distances, for pages in different
PageRank buckets.

supporters only for a subset of “suspicious” nodes; however,
we do not know a priori which nodes are spammers. An
efficient solution will be presented in Section 4.

3. RANK PROPAGATION
In this section we describe a link-based ranking method

that produces a metric suitable for Web link spam detection.
Let AN×N be the citation matrix of graph G = (V, E),

that is, axy = 1 ⇐⇒ (x, y) ∈ E. Let P be the row-
normalized version of the citation matrix, such that all rows
sum up to one, and rows of zeros are replaced by rows of
1/N to avoid the effect of rank “sinks”.

A functional ranking [1] is a link-based ranking algo-
rithm to compute a scoring vector W of the form:

W =

∞
X

t=0

damping(t)

N
Pt .

where damping(t) is a decreasing function on t, the lengths
of the paths. In particular, PageRank [22] is the most widely
known functional ranking, in which the damping function is
exponentially decreasing, namely, damping(t) = (1 − α)αt

where α is a damping factor between 0 and 1, typically 0.85.
A page participating in a link farm can gain a high Page-

Rank score because it has many in-links, this is, supporters
that are topologically “close” to the target node. Intuitively,
a way of demoting those pages could be to consider a damp-
ing function that ignores the direct contribution of the
first levels of links, such as:

damping(t) =

(

0 t ≤ T

Cαt t > T

Where C is a normalization constant and α is the damping
factor used for PageRank. The normalization constant is
such that

P

∞

t=0 damping(t) = 1, so C = (1− α)/(αT+1).
This function penalizes pages that obtain a large share

of their PageRank from the first few levels of links; we call
the corresponding functional ranking the Truncated Page-
Rank of a page. This is similar to PageRank, except that
the supporters that are too “close” to a target node, do not
contribute towards its ranking.

http://law.dsi.unimi.it/


Require: N: number of nodes, 0 < α < 1: damping factor,
T≥ −1: distance for truncation

1: for i : 1 . . . N do {Initialization}
2: R[i] ← (1− α)/((αT+1)N)
3: if T≥ 0 then
4: Score[i] ← 0
5: else {Calculate normal PageRank}
6: Score[i] ← R[i]
7: end if
8: end for
9: distance = 1

10: while not converged do
11: Aux ← 0
12: for src : 1 . . . N do {Follow links in the graph}
13: for all link from src to dest do
14: Aux[dest] ← Aux[dest] + R[src]/outdegree(src)
15: end for
16: end for
17: for i : 1 . . . N do {Apply damping factor α}
18: R[i] ← Aux[i] ×α
19: if distance > T then {Add to ranking value}
20: Score[i] ← Score[i] + R[i]
21: end if
22: end for
23: distance = distance +1
24: end while
25: return Score

Figure 5: TruncatedPageRank Algorithm.

For calculating the Truncated PageRank, we use the fol-
lowing auxiliary variable:

R(0) =
C

N
R(t) = αR(t−1)P ,

and we calculate the truncated PageRank by using:

W =

∞
X

t=T+1

R(t) .

The algorithm is presented in Figure 5. For the calculation,
it is important to keep the score and the accumulator R(t)

separated in the calculation, since we discard the first levels,
or we may end up with only zeros in the output. Note
that, when T = −1, we compute the normal PageRank.
In fact, writing W in closed form we have W = C

N
(I −

α P)−1(α P)T+1 which shows an additional damping factor
when T > −1.

When comparing the values obtained with PageRank with
those of TruncatedPageRank in the uk graph, for values of
T from 1 to 4. Figure 6 shows the result. As expected, both
measures are highly correlated, and the correlation decreases
as more levels are truncated.

We do not argue that Truncated PageRank should be used
as a substitute for PageRank, but we show in section 5 that
the ratio between Truncated PageRank and PageRank is ex-
tremely valuable for detecting link spam. In practice, for cal-
culating the Truncated PageRank it is easier to save “snap-
shots” with the partial PageRank values obtained at an in-
termediate point of the computation, and then use those
values to indirectly calculate the Truncated PageRank.

Figure 6: Comparing PageRank and Truncated
PageRank with T = 1 and T = 4. Each dot repre-
sents a home page in the uk graph. The correlation
is high and decreases as more levels are truncated.

4. ESTIMATION OF SUPPORTERS
In this section we describe a method for the estimation of

the number of supporters of each node in the graph. Our
method computes an estimation of the number of supporters
for all vertices in parallel at the same time and can be viewed
as a generalization of the ANF algorithm [23].

Since computing the number of supporters exactly is un-
feasible on a large Web graph, we use probabilistic counting
[6, 11]. As to this point, we propose a refinement of the
classical probabilistic counting algorithm proposed in [11]
and adopted in [23]. Our probabilistic counting algorithm
is equivalent to the one proposed in [11], though it is more
accurate when the distance under consideration is small, as
is the case in the application we consider. As an algorith-
mic engineering contribution, our probabilistic counting al-
gorithm is implemented with a generalization of the stream-
ing algorithm used for PageRank computation [22, 17]. As
a theoretical contribution, the probabilistic analysis of our
base algorithm turns out to be considerably simpler than
the one given in [11] for the original one.

4.1 General algorithm
We start by assigning a random vector of bits to each

page. We then perform an iterative computation: on each
iteration of the algorithm, if page y has a link to page x,
then the bit vector of page x is updated as x← x OR y. In
Figure 7, two iterations are shown. On each iteration, a bit
set to 1 in any page can only move by one link in distance.

Figure 7: Schematic depiction of the bit propagation
algorithm with two iterations.



Require: N : number of nodes, d: distance, k: bits
1: for node : 1 . . . N do {Every node}
2: for bit : 1 . . . k do {Every bit}
3: INIT(node,bit)
4: end for
5: end for
6: for distance : 1 . . . d do {Iteration step}
7: Aux ← 0k

8: for src : 1 . . . N do {Follow links in the graph}
9: for all links from src to dest do

10: Aux[dest] ← Aux[dest] OR V[src,·]
11: end for
12: end for
13: for node : 1 . . . N do
14: V[node,·] ← Aux[node]
15: end for
16: end for
17: for node: 1 . . . N do {Estimate supporters}
18: Supporters[node] ← ESTIMATE( V[node,·] )
19: end for
20: return Supporters

Figure 8: Bit-Propagation Algorithm for estimating
the number of distinct supporters at distance ≤ d of
all the nodes in the graph simultaneously.

After d iterations, the bit vector associated to any page
x provides information about the number of supporters of x
at distance ≤ d. Intuitively, if a page has a larger number
of supporters than another, more 1s will appear in the final
configuration of its bit vector. The algorithm, presented in
Figure 8, can be efficiently implemented by using bit oper-
ations if k matches the word size of a particular machine
architecture (e.g.: 32 or 64 bits).

The structure is the same as the algorithm in Figure 5, so
the estimation of the number of supporters for all vertices in
the graph can be computed concurrently with the execution
of Truncated PageRank and PageRank.

The basic algorithm requires O(kN) bits of memory, can
operate over a streamed version of the link graph stored
as an adjacency list, and requires to read the link graph d
times. Its adaptive version, shown in Subsection 4.3 requires
the same amount of memory and reads the graph O(d log N)
times, while the backward variant presented in Subsection
4.4 reads the graph O(d log Nmax(d)) times in the average,
where Nmax(d) is the maximum number of supporters at
distance at most d, normally much smaller than N for the
values of d that are of interest in our particular application.

Notation. Let vi be the bit vector associated to any
page, i = 1, . . . , N . Let x denote a specific page and let
S(x, d) denote the set of supporters of this page within some
given distance d. Let N(x, d) = |S(x, d)|. For concreteness,
and according to Figure 3, we are considering typical values
of d in the interval 1 ≤ d ≤ 20. For the sake of simplicity, in
the sequel we write S(x) and N(x) for S(x, d) and N(x, d)
whenever we are considering a specific value of d.

4.2 Base estimation technique
INIT(node,bit): In the initialization step, the j-th bit of

vi is set to 1 with probability ε, independently for every i =
1, . . . , N and j = 1, . . . , k (ε is a parameter of the algorithm
whose choice is explained below).
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Figure 9: Comparison of the estimation of the aver-
age number of distinct supporters, against the ob-
served value, in a sample of nodes.

Since ε is fixed, we can reduce the number of calls to the
random number generator by generating a random number
according to a geometric distribution with parameter 1 −
ε and then skipping a corresponding number of positions
before setting a 1. This is especially useful when ε is small.
ESTIMATE(V[node,·]) Consider a page x, its bit vector vx

and let Xi be its i-th component, i = 1, . . . , k. By the
properties of the OR operator and by the independence of
the Xi’s we have,

P[Xi = 1] = 1 − (1 − ε)N(x),

Also, if Bε(x) =
Pk

i=1 Xi, we have,

E[Bε(x)] = [1− (1 − ε)N(x)] k.

If we knew E[Bε(x)] we could compute N(x) exactly. In
practice, for every run of the algorithm and for every x we
simply have an estimation Bε(x) of it. Our base estimator
is:

N (x) = log(1−ε)

„

1−
Bε(x)

k

«

.

In Figure 9 we show the result of applying the basic al-
gorithm with ε = 1/N to the 860,000-nodes eu.int graph
using 32 and 64 bits, compared to the observed distribution
in a sample of nodes. It turns out that with these values
of k, the approximation at least captures the behavior of
the average number of neighbors. However, this is not good
enough for our purposes, as we are interested in specific
nodes. This motivates the next algorithm.

4.3 An adaptive estimator
The main problem with the basic technique is that, given

some number k of bits to use, not all values of ε are likely
to provide useful information. In particular, N(x) can vary
by orders of magnitudes as x varies. This means that for
some values of ε, the computed value of Bε(x) might be k
(or 0, depending on N(x)) with relatively high probability.
In order to circumvent this problem, we observe that, if we
knew N(x) and chose ε = 1/N(x) we would get:

E[Bε(x)] '

„

1 −
1

e

«

k ' 0.63k,

where the approximation is very good for all values of N(x, d)
of interest. Also, E[Bε(x)] is a monotone function in ε and



we can reasonably expect to observe a transition of Bε(x)
from a value smaller to a value larger than (1 − 1/e)k, as ε
increases from values smaller to values larger than 1/N(x).

In practice, we apply the basic algorithm O(log(N)) times
as explained in Figure 10. The rough idea is as follows:
starting with a value εmin (for instance, εmin = 1/N) we
proceed by doubling ε at each iteration, up to some value
εmax (for instance, εmax = 0.5). Given x, ε will at some point
take up some value ε(x) such that ε(x) ≤ 1/N(x) ≤ 2ε(x).
Ideally, increasing ε from ε(x) to 2ε(x), Bε(x) should transit
from a value smaller than (1 − 1/e)k to a value larger than
(1 − 1/e)k. This does not hold deterministically of course,
but it holds with sufficiently high probability, if k is large
enough.

Require: εmin, εmax limits
1: ε← εmin

2: while ε < εmax and not all nodes have estimations do
3: Run the Bit-Propagation algorithm with ε
4: for x such that Bε(x) > 0.63 k for the first time do
5: Estimate N (x)← 4/3ε
6: end for
7: ε← ε× 2
8: end while
9: return N(x)

Figure 10: Adaptive Bit-Propagation algorithm for
estimating the number of distinct supporters of all
nodes in the graph. The algorithm calls the normal
Bit-Propagation algorithm a number of times with
varying values of ε.

Lemma 1. Algorithm Adaptive Bit-Propagation iter-

ates for at most log2(εmax/εmin) = O(log2 N) times.

Note that we might have a “false positive”, i.e. for some
vertex x, it might be the case that Bε(x) > (1 − 1/e) k for
ε < ε(x) or Bε(x) < (1 − 1/e) k for ε > ε(x). We prove
that this is not likely to happen, provided k is large enough.
The proof of this fact, based on the application of standard
Chernoff’s bounds [19], will appear in the full version of the
paper.

Recall that N(x) denotes the estimation of N(x) com-
puted above and let ε = 1/N (x). Due to space limitations
the proof of the following theorem will appear in the full
version of the paper.

Theorem 1. Whenever 0.018 k ≥ 1, for every x:

P

»

(N(x) > 2N(x)) ∪

„

N(x) <
1

2
N(x)

«–

≤ 2e−0.018 k + e−0.013 k + e−0.31 k + e−0.045 k.

We want to underline that the analysis of our method is
much simpler than the one presented in [11]. The reason is
that the probabilistic analysis in [11] requires computing the
average position of the least significant bit that is not set to
1 in a suitably generated random bit string. Computing this
value is not straightforward. Conversely, in our case, every
Bε(x) is the sum of binary independent random variables,
so that we can easily compute its expectation and provide
tight bounds to the probability that it deviates from the
expectation for more than a given factor.
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Figure 11: Fraction of nodes with good estimations
after a certain number of iterations. For instance,
when measuring at distance d = 4, 15 iterations suf-
fice to have good estimators for 99% of the pages.

4.4 Experimental results
For the purpose of our experiments, we proceed back-

wards, starting with εmax = 1/2 and then dividing ε by
two at each iteration. This is faster than starting with
a smaller value and then multiplying by two, mainly be-
cause in our case we are dealing with small distances and
thus with neighborhoods in the order of hundreds or thou-
sands of nodes. We freeze the estimation for a node when
Bε(x) < 0.63k, and stop the iterations when 1% or less
nodes have Bε(x) ≥ 0.63k. Figure 11 shows that the num-
ber of iterations of the Adaptive Bit-Propagation algorithm
required for estimating the neighbors at distance 4 or less
is about 15, and for all distances up to 8 the number of
iterations required is less than 25.

Besides the estimator described in the previous section,
we considered the following one: whenever Bε(x) < 0.63k
for the first time, we estimate N(x) twice using the esti-
mator from section 4.2 with Bε(x) and B2ε(x), and then
average the resulting estimations. We call this the combined

estimator that uses both the information from ε as well as
the number of bits set. In practice the error of the combined
estimator is lower.

We compared the precision obtained by this method with
the precision given by the ANF algorithm [23]. In ANF, the
size of the bitmask depends on the size of the graph, while
the number of iterations (k in their notation) is used to
achieve the desired precision. Our approach is orthogonal:
the number of iterations depends on the graph size, while the
size of the bitmask is used to achieve the desired precision.
In order to compare the two algorithms fairly, we considered
the product between the bitmask size and the number of
iterations as a parameter describing the overall number of
bits per node used (this is in particular the case if iterations
are performed in parallel).

We fixed in ANF the size of the bitmask to 24, since 224 =
16M is the closest number for the 18 million nodes of our
collection (using more would be wasting bits). Next we ran
ANF for 24 iterations (equivalent to 576 bits × iterations)
and for 48 iterations (equivalent to 1152 bits × iterations).
The former value is slightly more than the requirements of
our algorithm at distance 1, while the latter is the same
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Figure 12: Comparison of the average relative error
of the different strategies.

requirement as our algorithm at distance 5 (one plus the
maximum distance we use for spam detection).

The comparison is shown in Figure 12. It turns out that
the basic estimator performs well over the entire distance
range, but both ANF and the combined estimator technique
perform better. In particular, our combined estimator per-
forms better than ANF for distances up to 5 (the ones we are
interested in for the application we consider), in the sense
that it has better average relative error and/or it has the
same performance but it uses a smaller overall amount of
bits. For larger distances the probabilistic counting tech-
nique used in ANF proves more efficient, since it has the
same performance but it uses a smaller overall amount of
bits.

It is also important to remark that, in practice, the mem-
ory allocation is in words of either 32 or 64 bits. This means
that, even if we choose a bitmask of 24 bits for the ANF
probabilistic counting routine, as was the case in our ex-
periments, 32 bits are actually allocated to each node, 8 of
which will not be used by the algorithm. With our approach
instead, these bits can be used to increase precision. These
considerations of efficiency are particularly important in the
large data sets we are considering.

5. EXPERIMENTS ON SPAM DETECTION
One of the key issues in spam detection is to provide di-

rect techniques that allow search engines to decide if a page
can be trusted. We built a set of classifiers to test the effi-
ciency of the metrics we have described for automatic spam
classification.

5.1 Data set and sampling
Our collection is a set of 18.5 million pages from the .uk

domain, downloaded in 2002. The pages were located in
98,452 different hosts. Given the large size of this collec-
tion, we decided to classify entire hosts instead of individual
pages. While this introduces errors, as some hosts are a
mixture of non-spam and spam content, it allows us to have
much broader coverage. To provide class labels for the clas-
sifier, we manually inspected a sample of 5,750 hosts (5.9%)
that covered 31.7% of the Web pages in the collection.

For every host, we inspected a few pages manually and
looked at the list of URLs collected from that host by the

Web crawler. Whenever we found a link farm inside the
host, we classified the entire host as spam. In practice, in
very few cases we observed mixtures of spam and non-spam
content in the same host.

The manual classification stage took roughly three work
days. As the amount of spam compared to normal pages
is relatively small, and since we want to focus on the most
“damaging” types of spam, we biased our sampling towards
hosts with high PageRank. This is the same approach taken
by other researchers in link-spam detection [5, 16]. We
also biased our sampling towards hosts with a large number
of pages and hosts with long names such as “www.buy-a--
used-car-today.example”. Neither the length of the host
names nor the number of pages in the host were provided as
attributes for the classification, as they are not link-based
features.

When manually tagging, we discarded the hosts that were
no longer available (about 7%) and classified the remaining
5, 344 hosts into the following 3 categories:

Spam (16%): The host is clearly a link farm; or it is
spamming by using unrelated keywords in the host, direc-
tory or file names; or it includes no content apart from links
to a target page or host.

Normal (81%): The host is clearly not a link farm (in
the jargon of e-mail spam detection tools, non-spam items
are also called “ham”).

Suspicious (3%): Borderline cases, including illegal busi-
ness (on-line gambling, pharmaceuticals without prescrip-
tion) and pornography, as they are usual customers of link
farms. We also included in this category hosts that are al-
most entirely content copied from other sources plus adver-
tising, affiliate networks, advertising servers, and groups of
entire hosts that share the same template with little added
information.

Table 1 shows the number of hosts and pages in each class.

Class Hosts Pages

Spam 840 16% 329 K 6%
Normal 4,333 81% 5,429 K 92%
. . . Suspicious 171 3% 118 K 2%
Total 5,344 (5.8%) 5,877 K (31.7%)

Table 1: Relative sizes of the classes in the manually-
classified sample. The last row gives the fraction of
classified hosts and pages over the entire collection.

There are many Web sites whose design is optimized for
search engines, but also provide useful content. This is a
gray area between “ethical” search engine optimization and
“unethical” spamdexing. For the class labels provided to the
algorithms in the automatic classification experiments, we
adopted a conservative approach and included the suspicious
pages in the normal class.

Also, we must note that the Web is a moving target, and
it is possible that Web sites have changed from spam to
non-spam or viceversa in the period from 2002 to date, so
regardless of the technique used, this may introduce extra
noise in the labels assigned to the hosts.

5.2 Automatic Classification
We extracted automatically a series of features from the

data, including the PageRank, TruncatedPageRank at dis-



tance d = 1, 2, 3 and 4, and the estimation of supporters at
the same distances, using the adaptive technique described
in section 4. These link-based metrics are defined for pages,
so we assigned them to hosts by measuring them at both the
home page of the host (the URL corresponding to the root
directory) and the page with the maximum PageRank of
the host. In our sample, these pages are not the same in
62% of the cases, so it is rather common that the highest
ranked page on a host is not the home page.

The classified hosts, grouped into the two manually-assigned
class labels: “spam” and “normal” constitute the training

set for the learning process. We experimented with the Weka
[25] implementation of C4.5 decision trees. Describing this
classifiers here in detail in not possible due to space limita-
tions, for a description see [25].

The evaluation of the learning schemes was performed by
a ten-fold cross-validation of the training data. The data
is first divided into 10 approximately equal partitions, then
each part is held out in turn and the learning scheme is
trained on the remaining 9 folds. The overall error estimate
is the average of the 10 error estimates. The error metrics
we are using are the precision and recall measures from in-
formation retrieval [3], considering the spam detection task:

Precision =
# of spam hosts classified as spam

# of hosts classified as spam

Recall =
# of spam hosts classified as spam

# of spam hosts
.

And we measured the two types of errors of the spam clas-
sification:

False positives =
# of normal hosts classified as spam

# of normal hosts

False negatives =
# of spam hosts classified as normal

# of spam hosts
.

The false negative rate is one minus the recall of the spam
detection task, and the false positive rate is one minus the
recall of the normal host detection task.

5.3 Combined classifier
We also included combinations of these features, includ-

ing for instance: ratio of supporters at distance d versus
supporters at distance d − 1, ratio of Truncated PageRank
at distance d versus PageRank, minimum ratio of neighbors
at d and neighbors at d− 1, and so on. In total, we used 82
features.

We built a complete decision tree that is post-pruned in
order to reduce the number of rules generated. In addition
we perform the reduced-error pruning step to optimize per-
formance.

We ran the algorithm first with a minimum of 5 and 30
hosts per leaf (parameter M) of the tree leading respectively
to a decision tree with 49 and 31 rules. We limit the rate
of hosts per leaf to avoid overfitting, and to have a smaller
set of rules that can be more easily studied and understood.
The results are shown in table 2.

We also generated a decision tree without the reduced-
error pruning step, that had 189 rules. This decision tree
does not improve the performance compared with the tree
of 49 rules, which detects 80% of the Web spam with 2% of
error rate.

Spam class False False
Pruning Rules Precision Recall Pos. Neg.

M = 5 49 0.87 0.80 2.0% 20%
M = 30 31 0.88 0.76 1.8% 24%

No pruning 189 0.85 0.79 2.6% 21%

Table 2: Evaluation of the performance of classifiers
based on a combination of Truncated PageRank and
Estimation of Supporters. M is the minimum num-
ber of hosts per leaf in the decision tree.

5.4 Comparison
We implemented the TrustRank [16, 14] algorithm for

testing it in our collection. TrustRank is a well-known al-
gorithm for separating high-quality reputable pages/hosts
from the rest, that is, spam and low-quality nodes. It pro-
vides a metric that can be used for ranking, and when com-
bined with PageRank, can also be used for Web spam de-
motion.

The TrustRank calculation starts from a set of pages man-
ually labeled as trusted, and does a random walk for a few
steps (typically around 20), returning to the original set with
a certain probability at each step (usually 0.15). The ob-
tained probability of reaching a page is called its estimated
non-spam mass. Pages with very low estimated non-spam
mass compared to their PageRank should be considered sus-
picious. The intuition is that a page with a high PageRank,
but with no connection with the most relevant pages on the
Web, can be considered suspicious.

In our implementation, for the set of trusted nodes we
used data from the Open Directory Project (Available at
http://dmoz.org/). This is a manually built directory of
Web sites that are considered to be of high quality. We
considered as trusted the 32,866 hosts in our collection (from
a total of 98,452) that had at least one Web page in the
directory.

We build one automatic classifier for each of the three
techniques we have described:

Classifier based on TrustRank: uses as features the Page-
Rank, the estimated non-spam mass, and the esti-
mated non-spam mass divided by PageRank.

Classifier based on Truncated PageRank: uses as fea-
tures the PageRank, the Truncated PageRank with
truncation distance t = 2, 3, 4 (with t = 1 it would be
just based on in-degree), and the Truncated PageRank
divided by PageRank.

Classifier based on Estimation of Supporters: uses as
features the PageRank, the estimation of supporters at
a given distance d = 2, 3, 4, and the estimation of sup-
porters divided by PageRank.

For every classifier, we measured the attributes in both
the home page and the page with the maximum PageRank
of every host. In this way, all the classifiers receive as an
input these six features plus the class label. Their accuracy
after ten-fold cross-validation is presented in Table 3.

The best single-technique classifier is the one based in es-
timation of supporters, that can detect 57%-64% of the Web
spam with 2.1%-2.0% of false positives. It is followed by the
classifier based on TrustRank alone, that detects 49%-50%

http://dmoz.org/


Table 3: Comparison of single-technique classifiers.

Classifiers Spam class False False
(pruning with M = 5) Prec. Recall Pos. Neg.

TrustRank 0.82 0.50 2.1% 50%
Trunc. PageRank t = 2 0.85 0.50 1.6% 50%
Trunc. PageRank t = 3 0.84 0.47 1.6% 53%
Trunc. PageRank t = 4 0.79 0.45 2.2% 55%
Est. Supporters d = 2 0.78 0.60 3.2% 40%
Est. Supporters d = 3 0.83 0.64 2.4% 36%
Est. Supporters d = 4 0.86 0.64 2.0% 36%

Classifiers Spam class False False
(pruning with M = 30) Prec. Recall Pos. Neg.

TrustRank 0.80 0.49 2.3% 51%
Trunc. PageRank t = 2 0.82 0.43 1.8% 57%
Trunc. PageRank t = 3 0.81 0.42 1.8% 58%
Trunc. PageRank t = 4 0.77 0.43 2.4% 57%
Est. Supporters d = 2 0.76 0.52 3.1% 48%
Est. Supporters d = 3 0.83 0.57 2.1% 43%
Est. Supporters d = 4 0.80 0.57 2.6% 43%

of the Web spam with 2.3%-2.1% of error and the classifier
based on Truncated PageRank, which detects 43%-50% of
the Web spam with 1.8%-1.6% of false positives.

None of these single-technique classifier is as good as the
combined classifier shown in Table 2. A comparison of the
performance of these classifiers is shown in Figure 13. A full
comparison of all the combinations is outside the scope of
this paper; in [4] we further study these and other metrics
for link-based Web spam detection, and combine several of
them to produce Web spam classifiers.

(a) Precision and recall of spam detection

(b) Error rates of the spam classifiers

Figure 13: Comparison of single-technique classifiers
and a combined classifier using the algorithms de-
scribed on this paper. Left: pruning with M = 5,
right: pruning with M = 30.

6. RELATED WORK
This section discusses previous work in the areas of link

spam detection, propagation of trust, and probabilistic count-
ing.

Detecting spam: In [10] it is shown that most outliers
in the histograms of certain properties of Web pages (such
as in-degree and out-degree) are groups of spam pages. The
method of “shingles” for detecting dense sub-graphs [12] can
be also applied for link farm detection, as members of a
link farm may share a substantial fraction of their out-links
(however, the algorithm will perform worse if the link farm
is randomized).

In [27] it is shown that spam pages should be very sensitive
to changes in the damping factor of the PageRank calcula-
tion; in our case with Truncated PageRank we modify not
only the damping factor but the whole damping function.

In [5] a different approach for detecting link spam is pro-
posed. They start from a suspicious page, follow links back-
wards to find pages which are strong contributors of Page-
Rank for the target node, and then measure if the distri-
bution of their PageRank is a power-law or they are mostly
pages in a narrow PageRank interval. Note that this can
only be done for some pages at the same time, while all the
algorithms we apply can be executed for all nodes in the

graph at the same time.
Also, content-based analysis [21, 8, 7] has been used for

detecting spam pages, by studying relevant features such
as page size or distribution of keywords, over a manually
tagged set of pages. Content-based analysis is orthogonal to
our approach, and thus both techniques can be combined to
increase the performance of spam detection in a real search
engine.

The performance of content-based classification is com-
parable to our approach. A state-of-the-art content-based
classifier described in [21], without bagging nor boosting
(equivalent to the classifiers we have presented here), re-
ported 82% of recall, with 2.5% of false positives. With our
classifier we had 80% of recall with 2.0% of false positives.
Unfortunately, their classifier is not publicly available for
evaluating its performance in the same collection as ours. It
is likely that Web spam classifiers will be kept as business
secrets by most researchers related to search engines, and
this implies that for evaluation it will be necessary to have
a common reference collection for the task of Web spam
detection in general.

Propagating trust and “spamicity”: It is important
to notice that we do not need to detect all spam pages, as
the “spamicity” can be propagated. A technique shown in
[26] is based on finding a page that is part of a link farm
and then marking all pages that link to it, possibly marking
recursively following back-links up to a certain threshold
(this is also called “BadRank”).

In [5], “spamicity” is propagated by running a personal-
ized PageRank in which the personalization vector demotes
pages that are found to be spam.

Probabilistic counting: Morris’ algorithm (1978) [20]
was the first randomized algorithm for counting up to a large
number with a few bits. A more sophisticated technique for
probabilistic counting is presented in [11]; this technique is
applied to the particular case of counting the number of
in-neighbors or “supporters” of a page in [23]. The use of
probabilistic counting is important in this case, as the cost
of calculating the exact values is prohibitive [18].



7. CONCLUSIONS AND FUTURE WORK
In this paper we have shown how two different algorithms:

rank propagation and probabilistic counting, can be viewed
as instances of a PageRank-like computation. We have ap-
plied these algorithms for Web spam detection and shown
that they can improve state-of the art Web spam detection
techniques.

Most modern search engines use a combination of factors
for ranking search results. These factors include information
aggregated from different sources, such as user clicks, text
similarity and link analysis. The “spamicity” of a page is
another factor and we must find how to combine it with the
other sources of information.

If we can estimate the probability of a page being spam,
then a natural combination could be to rank the pages ac-
cording to the product of their score and the probability of
a page being not spam –if we are 100% sure that a page is
spam, then its final score will be zero.

The performance of web spam detection algorithms in gen-
eral (not only ours) is still modest when compared with the
error rate of modern e-mail spam detection systems. Fortu-
nately, web spam detection can be more strict than e-mail
spam detection. While losing a relevant e-mail message is
very bad, demoting a relevant Web page in the search re-
sults is not so bad, because if the page is relevant, it can
be found later by following links, or it can be moved to the
second or third page of results.

However, the current precision and recall of Web spam
detection algorithms can be improved. An ambitious goal
we propose is to try to achieve the same precision and recall
of e-mail spam detection algorithms. In our opinion, this is
unfeasible with link-only or content-only classifiers, and re-
quires the combination of both methods. It also requires
assembling a common reference collection of Web spam,
and we intend to work with other researchers towards this
goal. Nevertheless, our technique does not need any previ-
ous spamicity information to work.

The source code of the Java implementation of the algo-
rithms presented in this paper will be freely available under
a GPL license at http://www.dis.uniroma1.it/∼ae/ for
the final version of the paper. The class labels we manually
assigned will be available at the same address for repeata-
bility of these results and further testing of these and other
web spam detection techniques.
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