
WIRE: an Open Source Web Information Retrieval Environment

Carlos Castillo
Center for Web Research, Universidad de Chile

carlos.castillo@upf.edu

Ricardo Baeza-Yates
Center for Web Research, Universidad de Chile

ricardo.baeza@upf.edu

Abstract

In this paper, we describe the WIRE (Web Information
Retrieval Environment) project and focus on some details
of its crawler component. The WIRE crawler is a scal-
able, highly configurable, high performance, open-source
Web crawler which we have used to study the characteris-
tics of large Web collections.

1. Introduction

At the Center for Web Research
(http://www.cwr.cl/) we are developing a soft-
ware suite for research in Web Information Retrieval,
which we have called WIRE (Web Information Retrieval
Environment). Our aim is to study the problems of Web
search by creating an efficient search engine. Search
engines play a key role on the Web, as searching currently
generates more than 13% of the traffic to Web sites [1].
Furthermore, 40% of the users arriving to a Web site for the
first time clicked a link from a search engine’s results [14].

The WIRE software suite generated several sub-projects,
including some of the modules depicted in Figure 1. So
far, we have developed an efficient general-purpose Web
crawler [6], a format for storing the Web collection, a tool
for extracting statistics from the collection and generating
reports and a search engine based on SWISH-E using Page-
Rank with non-uniform normalization [3].

In some sense, our system is aimed at a specific segment:
our objective was to use it to download and analyze collec-
tions having in the order of 10

6
− 10

7 documents. This is
bigger than most Web sites, but smaller than the complete
Web, so we worked mostly with national domains (ccTLDs:
country-code top level domains such as .cl or .gr). The
main characteristics of the WIRE crawler are:

High-performance and scalability: It is implemented
using about 25,000 lines of C/C++ code and designed to
work with large volumes of documents and to handle up to
a thousand HTTP requests simultaneously. The current im-
plementation would require further work to scale to billions

Figure 1. Some of the possible sub-projects
of WIRE, highlighting the completed parts.

of documents (e.g.: process some data structures on disk
instead of in main memory). Currently, the crawler is par-
allelizable, but unlike [8], it has a central point of control.

Configurable and open-source: Most of the parame-
ters for crawling and indexing can be configured, including
several scheduling policies. Also, all the programs and the
code are freely available under the GPL license.

The details about commercial search engines are usu-
ally kept as business secrets, but there are a few
examples of open-source Web crawlers, for instance
Nutch http://lucene.apache.org/nutch/. Our
system is designed to focus more on evaluating page qual-
ity, using different crawling strategies, and generating data
for Web characterization studies. Due to space limita-
tions, on this paper we describe only the crawler in some
detail. Source code and documentation, are available at
http://www.cwr.cl/projects/WIRE/.

The rest of this paper is organized as follows: section 2
details the main programs of the crawler and section 3 how
statistics are obtained. The last section presents our conclu-
sions.

http://www.chato.cl
mailto:carlos.castillo@upf.edu
http://www.baeza.cl/
mailto:ricardo.baeza@upf.edu
http://www.cwr.cl/
http://lucene.apache.org/nutch/
http://www.cwr.cl/projects/WIRE/


2 Web crawler

In this section, we present the four main programs that
are run in cycles during the crawler’s execution: manager,
harvester, gatherer and seeder, as shown in Figure 2.

Figure 2. Modules of the crawler.

2.1 Manager: long-term scheduling

The “manager” program generates the list of K URLs to
be downloaded in this cycle (we used K = 100, 000 pages
by default). The procedure for generating this list is based
on maximizing the “profit” of downloading a page [7].

Figure 3. Operation of the manager program.

The current value of a page depends on an estimation of
its intrinsic quality, and an estimation of the probability that
it has changed since it was crawled.

The process for selecting the pages to be crawled next
includes (1) filtering out pages that were downloaded too
recently, (2) estimating the quality of Web pages, (3) esti-
mating the freshness of Web pages and (4) calculating the
profit for downloading each page. This balances the pro-
cess of downloading new pages and updating the already-
downloaded ones. For example, in Figure 3, the behavior of
the manager for K = 2 is depicted. In the figure, it should

select pages P1 and P3 for this cycle as they give the higher
profit.

2.2 Harvester: short-term scheduling

The “harvester” program receives a list of K URLs and
attempts to download them from the Web. The politeness
policy chosen is to never open more than one simultaneous
connection to a Website, and to wait a configurable amount
of seconds between accesses (default 15). For the larger
Websites, over a certain quantity of pages (default 100), the
waiting time is reduced (to a default of 5 seconds).

As shown in Figure 4, the harvester creates a queue for
each Web site and opens one connection to each active Web
site (sites 2, 4, and 6). Some Web sites are “idle”, because
they have transfered pages too recently (sites 1, 5, and 7) or
because they have exhausted all of their pages for this batch
(3). This is implemented using a priority queue in which
Web sites are inserted according to a time-stamp for their
next visit.

Figure 4. Operation of the harvester program.

Our first implementation used Linux threads and did
blocking I/O on each thread. It worked well, but was not
able to go over 500 threads even in PCs with processors of
1 GHz and 1GB of RAM. It seems that entire thread sys-
tem was designed for only a few threads at the same time,
not for higher degrees of parallelization. Our current imple-
mentation uses a single thread with non-blocking I/O over
an array of sockets. The poll() system call is used to
check for activity in the sockets. This is much harder to
implement than the multi-threaded version, as in practical
terms it involves programming context switches explicitly,
but the performance is much better, allowing us to down-
load from over 1000 Web sites at the same time with a very
lightweight process.

2



2.3 Gatherer: parsing of pages

The “gatherer” program receives the raw Web pages
downloaded by the harvester and parses them. In the cur-
rent implementation, only HTML and plain text pages are
accepted by the harvester.

The parsing of HTML pages is done using an events-
oriented parser. An events-oriented parser (such as SAX
[12] for XML) does not build an structured representation
of the documents: it just generates function calls when-
ever certain conditions are met. We found that a substantial
amount of pages were not well-formed (e.g.: tags were not
balanced), so the parser must be very tolerant to malformed
markup.

The contents of Web pages are stored in variable-sized
records indexed by document-id. Insertions and deletions
are handled using a free-space list with first-fit allocation.
This data structure also implements duplicate detection:
whenever a new document is stored, a hash function of its
contents is calculated. If there is another document with the
same hash function and length, the contents of the docu-
ments are compared. If they are equal, the document-id of
the original document is returned, and the new document is
marked as a duplicate.

Figure 5. Storing the contents of a document.

The process for storing a document, given its contents
and document-id, is depicted in Figure 5. For storing a doc-
ument, the crawler has to check first if the document is a
duplicate, then search for a place in the free-space list, and
then write the document to disk. This module requires sup-
port to create large files, as for large collections the disk
storage grows over 2GB, and the offset cannot be provided
in a variable of type “long”. In Linux, the LFS stan-
dard [10] provides offsets of type “long long” that are
used for disk I/O operations. The usage of continuous, large

files for millions of pages, instead of small files, can save a
lot of disk seeks, as noted also by Patterson [16].

2.4 Seeder: URL resolver

The “seeder” program receives a list of URLs found by
the gatherer, and adds some of them to the collection, ac-
cording to a criteria given in the configuration file. This
criteria includes patterns for accepting, rejecting, and trans-
forming URLs.

Patterns for accepting URLs include domain name and
file name patterns. The domain name patterns are given
as suffixes (e.g.: .cl, .uchile.cl, etc.) and the file
name patterns are given as file extensions. Patterns for re-
jecting URLs include substrings that appear on the param-
eters of known Web applications (e.g. login, logout,
register, etc.) that lead to URLs which are not rele-
vant for a search engine. Finally, to avoid duplicates from
session ids, patterns for transforming the URLs are used
to remove known session-id variables such as PHPSESSID
from the URLs.

Figure 6. For checking a URL: (1) the host
name is searched in the hash table of Web
site names. The resulting site-id (2) is con-
catenated with the path and filename (3) to
obtain a doc-id (4).

The structure that holds the URLs is highly optimized for
the most common operations during the crawling process:
given the name of a Web site, obtain a site-id, given the site-
id of a Web site and a local link, obtain a document-id, and
given a full URL, obtain both its site-id and document-id.
The process for converting a full URL is shown in Figure 6.

This process is optimized to exploit the locality on Web
links, as most of the links found in a page point to other
pages co-located in the same Web site. For this, the im-
plementation uses two hash tables: the first for converting

3



Web site names into site-ids, and the second for converting
“site-id + path name” to a doc-id.

3 Obtaining statistics

To run the crawler on a large collection, the user must
specify the site suffix(es) that will be crawled (e.g.: .kr
or .upf.edu), and has to provide a starting list of “seed”
URLs. Also, the crawling limits have to be provided, in-
cluding the maximum number of pages per site (the default
is 25,000) and the maximum exploration depth (default is 5
levels for dynamic pages and 15 for static pages).

There are several configurable parameters, including the
amount of time the crawler waits between accesses to a
Web site –that can be fine-tuned by distinguishing be-
tween “large” and “small” sites– the number of simultane-
ous downloads, the timeout for downloading pages, among
many others. On a standard PC with a 1 GHz Intel 4 proces-
sor and 1 GB of RAM, using standard IDE disks, we usually
download and parse about 2 million pages per day.

WIRE stores as much metadata as possible about Web
pages and Web sites during the crawl, and includes several
tools for extracting this data and for obtaining statistics. The
analysis includes running link analysis algorithms such as
Pagerank [15] and HITS [11], aggregating this information
by documents and sites, and generating histograms for al-
most every property that is stored by the system. It also
includes a module for detecting the language of a document
based on a dictionary of stopwords in several languages that
is included with WIRE.

The process for generating reports includes the analy-
sis of the data, its extraction, the generation of gnuplot
scripts for plotting, and the compilation of automated re-
ports using LATEX. The generated reports include: distri-
bution of language, histograms of in- and out-degree, link
scores, page depth, HTTP response codes, age (including
per-site average, minimum and maximum), summations of
link scores per site, histogram of pages per site and bytes
per site, an analysis by components in the Web structure [5],
the distribution of links to multimedia files, and of links to
domains that are outside the delimited working set for the
crawler.

4 Conclusions

So far, we have used WIRE to study large Web col-
lections including the national domains of Brazil [13],
Chile [2], Greece [9] and South Korea [4]. We are currently
developing a module for supporting multiple text encodings
including Unicode.

While downloading a few thousands pages from a bunch
of Web sites is relatively easy, building a Web crawler that

has to deal with millions of pages and also with misconfig-
ured Web servers and bad HTML coding requires solving a
lot of technical problems. The source code and the docu-
mentation of WIRE, including step-by-step instructions for
running a Web crawl and analysing the results, are available
at http://www.cwr.cl/projects/WIRE/doc/.

References

[1] Search Engine Referrals Nearly Double Worldwide.
http://websidestory.com/pressroom/pressreleases.html?id=181,
2003.

[2] R. Baeza-Yates and C. Castillo. Caracterı́sticas de la Web
Chilena 2004. Technical report, Center for Web Research,
University of Chile, 2005.

[3] R. Baeza-Yates and E. Davis. Web page ranking using link
attributes. In Alternate track papers & posters of the 13th
international conference on World Wide Web, pages 328–
329, New York, NY, USA, 2004. ACM Press.

[4] R. Baeza-Yates and F. Lalanne. Characteristics of the Ko-
rean Web. Technical report, Korea–Chile IT Cooperation
Center ITCC, 2004.

[5] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Ra-
jagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph struc-
ture in the Web: Experiments and models. In Proceedings of
the Ninth Conference on World Wide Web, pages 309–320,
Amsterdam, Netherlands, May 2000. ACM Press.

[6] C. Castillo. Effective Web Crawling. PhD thesis, University
of Chile, 2004.

[7] C. Castillo and R. Baeza-Yates. A new crawling model.
In Poster proceedings of the eleventh conference on World
Wide Web, Honolulu, Hawaii, USA, 2002.

[8] J. Cho and H. Garcia-Molina. Parallel crawlers. In Proceed-
ings of the eleventh international conference on World Wide
Web, pages 124–135, Honolulu, Hawaii, USA, 2002. ACM
Press.

[9] E. Efthimiadis and C. Castillo. Charting the Greek Web. In
Proceedings of the Conference of the American Society for
Information Science and Technology (ASIST), Providence,
Rhode Island, USA, November 2004. American Society for
Information Science and Technology.

[10] A. Jaeger. Large File Support in Linux.
http://www.suse.de/aj/linux lfs.html, 2004.

[11] J. M. Kleinberg. Authoritative sources in a hyperlinked en-
vironment. Journal of the ACM, 46(5):604–632, 1999.

[12] D. Megginson. Simple API for XML (SAX 2.0).
http://sax.sourceforge.net/, 2004.

[13] M. Modesto, á. Pereira, N. Ziviani, C. Castillo, and
R. Baeza-Yates. Un novo retrato da Web Brasileira. In Pro-
ceedings of SEMISH, São Leopoldo, Brazil, 2005.

[14] J. Nielsen. Statistics for Traffic Referred by Search Engines
and Navigation Directories to Useit. http://www.useit.com/-
about/searchreferrals.html, 2003.

[15] L. Page, S. Brin, R. Motwani, and T. Winograd. The Page-
Rank citation ranking: bringing order to the Web. Technical
report, Stanford Digital Library Technologies Project, 1998.

[16] A. Patterson. Why writing your own search engine is hard.
ACM Queue, April 2004.

4

http://www.cwr.cl/projects/WIRE/doc/
http://websidestory.com/pressroom/pressreleases.html?id=181
http://www.www2004.org/proceedings/docs/2p328.pdf
http://quintay.dcc.uchile.cl/korea/korea.pdf
http://www9.org/w9cdrom/160/160.html
http://www.chato.cl/534/article-63160.html
http://www.dcc.uchile.cl/~ccastill/papers/castillo01newcrawling.pdf
http://www.asis.org/Conferences/AM04/posters/275.doc
http://www.suse.de/~aj/linux_lfs.html
http://citeseer.ist.psu.edu/kleinberg99authoritative.html
http://www.dcc.uchile.cl/%7Eccastill/papers/modesto_05_novo_retrato_web_brasileira.pdf
http://http://www.useit.com/about/searchreferrals.html
http://citeseer.ist.psu.edu/page98pagerank.html
http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=143

	. Introduction
	Web crawler
	Manager: long-term scheduling
	Harvester: short-term scheduling
	Gatherer: parsing of pages
	Seeder: URL resolver

	Obtaining statistics
	Conclusions

