
Crawling the Web with Limited Memory

Carlos Castillo
Università di Roma
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ABSTRACT
Search engines rely on Web crawlers to create a Web index,
by exploring the Web graph, downloading pages, and finding
links to new pages to be explored. At any given moment,
there are a number of pages waiting to be downloaded in
the crawler queue. We study the growth of the queue of
pending pages during a crawl of a large subset of the Web. In
a normal breadth-first crawler, the queue of pending pages
quickly grows very large.

We present a strategy for managing the pending queue
that reduces its maximum size by 50% while preserving the
coverage and quality of the pages visited. This can be ap-
plied in general Web search as well as topic-specific crawling,
peer-to-peer search, on-demand Web crawling, and other
environments in which memory usage has to be kept to a
minimum.

1. INTRODUCTION
Web crawlers are used by Web search engines to visit Web

pages automatically, by recursively following links until a
certain stopping criteria is met. Large-scale Web search en-
gines index more than 11.5 billion pages [8], and this large
size is explained mostly by the existence of a large number
of dynamic pages. Dynamic pages are pages that are gen-
erated at the time they are requested by querying a data
source and formatting the query output in HTML format.

When crawling the Web, a queue of pages to be visited is
initialized with a set of starting pages that are downloaded
and parsed to extract links. Newly discovered pages are
added to this queue, downloaded, and so on. Because the
Web has an effectively infinite number of pages, by the time
the crawler is stopped in a large-scale search engine, the
number of pages remaining in the queue is often larger than
the number of pages that were really crawled.

The typical scheduling policy for Web crawling is breadth-
first search [15], because it produces a collection with high
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quality, by finding “good” pages early in the crawl. Unfor-
tunately, the size of the queue of pending pages grows very
quickly. To visualize this phenomenon, we used the Web-
Base [10] repository of 118 million pages and simulated a
breadth-first (henceforth BFS) and depth-first (henceforth
DFS) visit of its nodes starting from an arbitrary, but fixed,
set of nodes. The size of the pending queue for both schedul-
ing policies is shown in Figure 1, which shows the essence of
the problem that we study in this paper.

Figure 1: Queue size, as a fraction of the size of
the collection, in breadth-first search and depth-first
search (WebBase collection).

In Figure 1, the y-axis reports the queue size as the frac-
tion of nodes of the web sample. The x-axis loosely corre-
spond to time, but also to coverage: the fraction of the web
that is visited. A value of 1 corresponds to what we define to
be full coverage: the portion of the web that can be reached
starting from an arbitrary, but fixed, set of nodes. Natu-
rally, in all our experiments the different visiting strategies
start from the same initial set of nodes.

As we can see in the figure, in breadth-first search the
queue size grows very fast, up to a maximum of roughly
14% of the total number of pages (which can be in the order
of billions of pages in the case of the full Web).

On the other hand, in depth-first search the queue is al-
ways much smaller. However, depth-first search has a num-
ber of drawbacks that prevent its use in practice. First,
it takes a long time in finding pages with high quality [2,
5, 15]; second, it focuses the crawler on a few sites, poten-
tially violating typical “politeness” properties toward Web
servers [11]; and it is prone to get stuck in artificially crafted
Web page loops, also known as “crawler traps”.

http://www.chato.cl/
http://www.dsi.uniroma1.it/~ale/


The goal of our research is to find a strategy that matches
the good properties of breadth-first search in terms of qual-
ity and politeness with Web servers, while using a queue size
comparable to that of depth-first search.

Specifically, the main contributions of this paper are:

• We describe a simple crawling strategy that we dubbed
the Sydney Strategy, for reducing the size of the
crawling queue by up to 50% without losing coverage.

• We describe a variation of the Sydney Strategy for
reducing the size of the crawling queue even more, at
the expense of very limited loss of coverage.

• We show that both strategies behave very well in terms
of their ability to find high-quality pages, and that
moreover these are collected early in the crawl. In the
fixed-budget case, when some coverage is lost, we show
that the pages that are not downloaded are not likely
to be of high-quality.

The next section presents our test collections. Section 3
presents the crawling strategies and analyzes them in terms
of queue size and coverage. Section 4 compares the strategies
in terms of quality of the resulting set. The last section
discusses applications and future work.

2. DATA SETS
For our experiments, we used three data sets representing

large samples from the World Wide Web. The largest col-
lection we used was obtained from the Stanford WebBase
project [10]. This is a graph with 118 million pages and
1,019 million links, crawled in 2001.

We also used other two collections crawled by the Labo-
ratory of Web Algorithmics, Dipartimento di Scienze dell’
Informazione, Universitá degli studi di Milano. These col-
lections are available on-line at http://law.dsi.unimi.it/.
The specific data sets we used were a sample of 18 million
pages from the .UK domain downloaded in 2002, and a sam-
ple of 41 million pages from the .IT domain downloaded in
2004.

We tested all the algorithms in the three datasets and the
results were basically the same. In many of the graphs in this
paper, we show the results from one sample for conciseness.

3. THE SYDNEY STRATEGY
We present a strategy that can reduce the queue size while

at the same time preserving coverage, quality of the retrieved
pages and politeness toward Web servers.

The basic scheme is as follows. We use two queues, re-
ferred to as the primary queue, denoted by P , and the
secondary queue, denoted by S. We also keep a list of
visited pages, denoted by V and initially empty.

The algorithm is initialized by inserting a set of starting
nodes in the primary queue P and with an empty secondary
queue S.

As long as P is not empty, nodes are extracted from it
and downloaded, one node at a time. Let v be the node
just extracted from P , and let N+(v) be the set of new
pages pointed to by v by means of hyperlinks, i.e. we do not
consider links pointing to already seen pages (in P , S or V ).

The algorithm selects a random subset of (up to) t nodes
from N+(v), where t is a parameter of the algorithm. Let R

denote this set. Now, if N+(v)− R = ∅, that is, if we have
visited all out-neighbours of v, then node v is discarded.
Otherwise, if there are yet unvisited out-neighbours of v, we
insert v in the secondary queue S, to explore its remaining
neighbours later.

When P becomes empty, the contents of S are emptied
into P . The visit terminates when both queues become
empty. Figure 2 presents the algorithm in pseudo code.

Require: Starting URLS, t: number of links to sample
1: P ← starting URLs (primary queue)
2: S ← ∅ (secondary queue)
3: V ← ∅ (visited pages)
4: while P 6= ∅ do
5: Pick a page v from P and download it
6: V ← V ∪ {v} (mark as visited)
7: N+(v)← v’s out-links pointing to new pages

(“new” means not in P , S or V )
8: if |N+(v)| > t then
9: R← a random sample of t nodes from N+(v)

10: S ← S ∪ {v}
11: end if
12: P ← P ∪ R

13: if P = φ then
14: P ← S

15: S ← ∅
16: end if
17: end while

Figure 2: Algorithm of the Sydney Strategy with
sampling parameter t.

We call this strategy the Sydney strategy with parame-
ter t, for the peculiar shape of the curve describing memory
utilization, reminiscent of the famous Sydney Opera House.
The typical trend is shown in Figure 3 where we compare
breadth-first search and depth-first search against the Syd-
ney strategy (with parameter t = 8 and t = 16).

Figure 3: Memory usage of the Sydney Strategy.
In this case, we take at most t = 8 or t = 16 out-
links from each page. Coverage is preserved, and
the maximum queue size can be reduced to half the
size of breadth-first search.

We see from the figure that the Sydney Strategy attains
full coverage of the collection. This is because the two visits
only differ in their ordering, but the set of links that they
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traverse is the same (albeit at different times). The same
holds for DFS.

The figure reports the cumulative memory usage of the
Sydney strategy, i.e. |P | + |S|. The saving is apparent and
can be quantified as being half of BFS. That the Sydney
strategy saves substantially in terms of memory w.r.t. BFS
is a robust conclusion. Identical results are obtained with
the .uk and .it datasets: full coverage, and a memory con-
sumption which is roughly half of that of BFS. This is ob-
tained by Sydney with parameter 8.

This data raises a few interesting questions:

1. Why is this happening?

2. How should the parameter t be set for best results?

3. Can the strategy be improved?

4. What is the performance of the Sydney strategy in
terms of other relevant parameters: in particular, how
does it perform in terms of quality of the retrieved
pages and politeness?

Section 4 is devoted to the last question. As we shall see,
the strategy performs remarkably well in terms of quality.
The rest of this section deals with the other questions.

3.1 Why the Sydney strategy performs well
One plausible explanation at the outset is that the nodes

with more than t out-links are a very small fraction of the
total, so they do not affect the results. However, this is
not true. Figure 4 shows the out-degree distribution of the
WebBase data set.

Figure 4: Out-degree distribution in the WebBase
data set.

The figure displays the typical distribution on a log-log
scale that has been observed by several authors (see for in-
stance [3, 14]). The distribution of the out-degree is well
approximated by a double-pareto or by a log-normal distri-
bution. Roughly, the distribution says that even for very
large values of the out-degree, there is a small, but non-
negligible fraction of nodes with that out-degree.

Figure 5 reports the fraction of nodes with out-degree
greater than 8 and 16 respectively, in the three datasets.
The WebBase dataset is older than the others and thus has
a lower out-degree, as expected given that the Web graph

has been growing more dense in the past years [12]. How-
ever, this difference does not seems to have a noticeable
effect in the behavior of the crawling strategies we discuss
in this paper.

Figure 5: Out-degree distribution in all three
datasets. The fraction of nodes with more than 8
and 16 out-links is significant.

As it can be seen, in principle the fraction of nodes that
should be transferred to the secondary queue S is more than
half of the nodes! Why does it never grow to more than 3%
of the Web in our datasets?

If most of the Web pages were reachable from a small set
of pages, that would make the secondary queue unneces-
sary. However, it is not the case. The secondary queue is
necessary to have high coverage of the collection.

Figure 6 shows the portion of the Web that is covered
only by the nodes of the primary queue P. Their coverage
is compared to that of BFS and DFS, i.e. what we defined
to be full coverage. The two strategies are referred to in the
figure as Random 8 and Random 16, since the links of the
extracted node that are followed are chosen at random.

Figure 6: Ignoring the secondary queue, and taking
at random 8 and 16 out-links per page, we cannot
attain full coverage of the graph (dataset .IT)

Under these strategies, some coverage is lost. When t = 8
the coverage of nodes in primary queue is 55%. This means
that nodes with out-degree greater than 8 cover about 45%
of the Web. Likewise, nodes with out-degree greater than
16 cover roughly 25% of the Web.



A related phenomenon was observed recently in a large
collection of 200 million Chinese pages by Meng and Tan [13].
They ran a breadth-first crawler that discarded 2% of the
out-links of every page, and observed a loss of 50% of the
coverage. This is partially explained by the existence of
“peninsulas” on the Web; that is, pages that are connected
to the rest of the Web by a single page. According to the
authors of [13], roughly 4% of the pages on the Web connect
to a peninsula having more than 10 pages.

Even if it loses coverage, this “truncated” strategy is in-
teresting in itself. In the next section we will show that it
performs well in terms of quality. Therefore it might pro-
vide a quick-and-dirty solution to collect what is perhaps
the most significant portion of the Web. One could envisage
frequent periodic crawls of this most significant part of the
Web, interleaved by less frequent and more expensive, but
more thorough, explorations of a larger portion.

Figure 7 shows the separate growth of the two queues,
primary and secondary, as well as their combination and
the growth of BFS for the .it dataset. The parameter t of
the Sydney strategy is t = 8. The secondary queues grows
to a maximum of roughly 3% of the Web.

Figure 7: Separate growth of both queues (dataset
.IT)

To summarize, we know that low-degree nodes (i.e. nodes
with degree less than the parameter t of the Sydney strat-
egy) are roughly half of the Web and cover roughly half of
the Web. The secondary queue however, where the remain-
ing half of the Web consisting of high degree nodes should
eventually go, only grows to a tiny fraction of the Web.
Why?

The explanation is related to the phenomenon exploited
in [6] to very efficiently compress the web graph. If we sort
the Web lexicographically with respect to the URLs, we see
that pages having a large prefix of the URL in common, i.e.
pages of the same host, or under the same directory, will
have many common out-neighbors.

As an example suppose we have two vertices u and v each
of out-degree 10 that have the same out-neighbourhood, and
we set our sampling parameter t = 8. If u is extracted from
the primary queue first, t out-neighbours will be marked as
visited and inserted in the primary queue. Therefore when
v is extracted, it will point at most to two unexplored nodes
and will never enter the secondary queue. As observed in [6],
this structural observation about links on the Web is robust.

3.2 The choice of the sampling parameter
Thus we have a satisfactory explanation of why the Syd-

ney strategy is so efficient in terms of memory. We now
turn to the other questions. Concerning the best value of
t, naturally setting t =∞ yields a pure breadth-first search
with a very large primary queue. On the other end, setting
a t that is too small implies that the secondary queue will
grow too large.

The problem with the secondary queue is that we need
to visit those nodes again to extract their out-links. These
re-visits impose extra costs in terms of network connectivity,
but fortunately, only a few nodes have to be visited more
than once. In Table 1 we show the maximum queue size,
and the fraction of nodes that have to be re-visited in the
WebBase collection, for different values of t. There is an
interesting trade-off between the number of maximum out-
links taken per page and the maximum queue size. For
instance, when we increase t from 8 to 16, the maximum
queue size grows from 50% to 64% of that of BFS, but only
1% of the pages have to be visited more than once.

Table 1: Maximum total queue size (primary and
secondary queue) and fraction of re-visits for the
Sydney Strategy with parameter t.

Max. outlinks (t) All 64 32 16 8

Max. queue size 0.14 0.12 0.11 0.09 0.07
(w.r.t. BFS) 100% 86% 79% 64% 50%

Re-visited nodes 0% 0.1% 0.4% 1.0% 2.2%

If we are operating in a less restrictive environment, do-
ing a second network request for the nodes in the secondary
queue may not be necessary. The URLs contained in the
pages with many out-links can be stored on disk sequentially
as (compressed) text, and then added to the crawler’s queue
later, when necessary. In fact, it should be done in that way
in large collections, as the Web is a very dynamic environ-
ment and the nodes in the secondary queue may change.

3.3 A fixed-budget Sydney Strategy
In the experiments we have been discussing, the memory

at our disposal was potentially unlimited. In some situations
there might be a fixed, pre-defined amount of memory avail-
able to use. With a fixed amount of memory, at some point
the algorithm will have to discard some links, so some pages
will not be downloaded. Therefore we ran some experiments
to see how this strategy performs in terms of coverage.

Figure 8 shows the coverage when the (combined) queue
size Sydney strategy with parameter t = 8 is limited to,
3%, 5% and 7% of the portion of the Web that is explored
respectively. Once the limit is reached, the crawler does not
add new links to any of the two queues until more space
becomes available.

Note that coverage is full when the memory budget is
equal to 7%. In general, it seems that a smaller t gives better
coverage. Figure 8 (bottom) is the same as Figure 8 (top)
with respect to the Sydney strategy with parameter t = 16.
With the same memory budget coverage is inferior.



Figure 8: Memory usage of the fixed-budget Sydney
strategy. Here the combined size of the queues is
limited to 3%, 5% and 7% of the total exploration
space. Top: t = 8, bottom: t = 16 (dataset .IT).

Table 2 shows the coverage of the different fixed-budget
Sydney strategies. Interestingly, allowing more out-links to
be sampled (t = 16) actually worsens the coverage com-
pared to a more restrictive approach (t = 8). The explana-
tion is that under a fixed-budget scenario, it is important to
limit the growth of the primary queue to attain better cov-
erage. In this regard, a more conservative sampling (t = 8)
achieves better results.

Table 2: Coverage of the fixed-budget Sydney strat-
egy. Sampling more out-links seems to have a detri-
mental effect on the coverage, mostly due to the fast
growth of the primary queue.

Queue limit
Sampling parameter 3% 5% 7%

t = 8 out-links max. 93.8% 97.5% 99.9%
t = 16 out-links max. 89.0% 94.8% 98.1%

4. QUALITY FIRST
We now investigate the quality of the retrieved pages un-

der these strategies. We used three objective criteria that
may provide reasonable proxies for quality: (a) Cumulative
PageRank (used in basically all crawling scheduling stud-
ies such as [2, 5, 7, 9]); (b) Cumulative in-degree, and (c)
Cumulative number of home pages that are collected as the
visit proceeds.

Figure 9: Measures of quality of the obtained col-
lections with the different crawling strategies. Top:
cumulative PageRank, center: cumulative in-degree,
bottom: cumulative fraction of home pages (Web-
Base data set).

According to all of these metrics the Sydney strategy per-
forms very well. In particular, it is comparable to, and usu-
ally better than pure BFS. Figure 9 (top) shows the cu-
mulative PageRank of various strategies for the WebBase
collection. The same trend is observed in the other data
sets we tried. The Sydney strategy is somewhat better than
BFS for both values of t that we tried (t = 8, 16). We do
not have a convincing explanation of this fact.



Figure 9 (center) shows the cumulative in-degree of the
same set of strategies, again for the WebBase collection.
The same trend is exhibited by the other data sets we tried.
The Sydney strategy is somewhat better than BFS.

Figure 9 (bottom) shows the cumulative number of home
pages that are visited by the strategies as the visit proceeds,
and the difference is small among the strategies, with a slight
advantage for the Sydney strategy over BFS for both values
of t (t = 8, 16).

As for the truncated strategy that selects a random sam-
ple of the out-links and does not use a secondary queue
(shown in Figure 6), the behavior for the quality metrics is
the same, except that the curves are interrupted because the
truncated strategies do not attain full coverage. The trun-
cated strategy with t = 8 that covers roughly 45% of the
Web captures about 81% of the total PageRank, while the
strategy with t = 16 that covers 75% of the Web captures
89% of the total PageRank. This supports the idea that the
loss of coverage of the truncated strategies does not include
many high-quality nodes.

Finally, for the fixed-budget strategy (shown in Figure 8),
the performance in terms of quality is also better than breadth-
first search. The loss of coverage in the worst case we ob-
served was about 11%, but the maximum loss of cumulative
PageRank is 5% in our experiments.

5. CONCLUSION
The conclusion is robust: the Sydney strategy reduces

the queue size, without reducing the quality of the obtained
collection and in fact often improving it. The same holds
for the Sydney strategy with fixed budget. Next we discuss
applications for this result and future work.

5.1 Applications
Why is it important to keep the queue size small? A

simple, but valid, answer is that saving resources such as
memory, where the queue is usually to be stored, is always
important. This is especially true for Web applications such
as crawling, for which the typical size is of data is huge.

More specifically, the list of URLs in the crawling frontier
can be stored as a priority queue, in which the next URL, or
set of URLs, has to be chosen carefully; part of this priority
queue has to be manipulated in main memory or kept as a
data structure on disk. As we have seen, this may become
very large compared to the size of the collection. In the
strategies we have presented here, up to 50% of the size of
this data structure can be saved, and this can be done at
the expense of a few re-visits to some nodes, or by saving
lists of links in secondary memory in sequential files that do
not need to be searched nor sorted and that are read back
to main memory in batch mode.

In our case we are dealing with a simulated crawl over
a known subset of the Web; in the case of a large-scale
search engine, the techniques we have presented are even
more useful as instead of growing and then shrinking, the
queue of pending pages continues to grow without bounds.
For crawlers that operate at Web scale, it is typical that
when the search engine operator stops the crawler, there are
more pages in the crawling queue than the pages that were
actually downloaded. It is sensible, then, to avoid putting
in the crawling queue too many pages, especially if many of
them will never be actually visited.

The issue of saving space in the crawling queue is even
more relevant for crawlers that do not operate over the entire
Web graph. An example of this are information agents that
must compute aggregate queries over a set of Web pages,
for instance, to find the minimum price for a good or ser-
vice. These information agents do “on demand” crawling
on behalf of one or several users, and may even operate in
the background on desktop PCs, where resources are at a
premium. On the Semantic Web [4], it may become increas-
ingly common that some information needs are not answered
by a search engine by inspecting a set of pre-indexed pages,
but have to be fulfilled by recursively querying a set of data
sources and aggregating the results.

5.2 Future work
We have also studied other techniques involving selective

visits of pages. A promising approach we have tested is to
exploit the directory structure of some sites, picking only a
fraction of the out-links of home pages and pages in the first
few levels of a Web site, but selecting all of the out-links of
deeper pages. The reason is that pages deeper inside a Web
site are more difficult to find as they have lower in-degrees.
This approach also leads to savings in the queue size without
having a large impact on the coverage. However, the savings
are comparable to those obtained with the simpler strategy
we presented on this paper.

The ideas we have presented here can be combined with
quality estimators of Web pages (for instance, with on-line
page importance computations [1]) so a page with a large
out-degree, but a low quality estimator should be added to
the to the secondary queue. We are currently studying these
quality-aware strategies.
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