
Query-log mining for detecting
polysemy and spam

Carlos Castillo1, Claudio Corsi2, Debora Donato1,
Paolo Ferragina2, and Aristides Gionis1

1 Yahoo! Research Labs, Barcelona, Spain
2 Dipartimento di Informatica, University of Pisa, Italy

Abstract. Through their interaction with search engines, users provide
implicit feedback that can be used to extract useful knowledge and im-
prove the quality of the search process. This feedback is encoded in the
form of a query log that consists of a sequence of search actions, which
contain information about submitted queries, documents viewed, and
documents clicked by the users. In this paper, we propose characteriz-
ing documents and queries via the information available within a query
log, with the goal of detecting either query polysemy or spam-hosts and
spam-queries, i.e., queries that shown the undesirable property of show-
ing a higher rate of spam pages in their list of results than other queries.
The main contribution of our paper consists of exploiting user feedback
and query-log mining to combat spam and identify query polysemy. Our
experiments attest the effectiveness of our approach for the applications
we consider.

1 Introduction

Every day millions of users are searching for information on the web. Through
their interaction with search engines, users locate not only the information they
are looking for, but also provide implicit feedback to the results shown by the
search engine for their queries. Nowadays search engines record query logs that
consist of a sequence of search actions, which contain information about submit-
ted queries, documents viewed, and documents clicked. Such information can be
seen as “soft” relevance feedback for the documents that are clicked as results of
specific queries, and queries can be interpreted as tags for the clicked documents.

Typically, a query log is abstracted by means of a graph structure, called
query-log graph or click graph [1–3]. The click graph is an undirected labeled
bipartite graph G in which nodes correspond to queries and documents, and
edges indicate that at least one user who submitted query q has subsequently
clicked on a result document d. Each edge is associated with a weight w(q, d)
that may indicate how many times query q led a user to click on document d, or
how many distinct users clicked on d after submitting q. The click graph is sparse
because many relevant documents have been possibly not clicked by users, and
noisy because many non-relevant documents may have been clicked by several
users (or robots). Nonetheless, the overall structure of the click graph captures



valuable information. For instance, an edge (q, d) can be interpreted as a vote
of q about d; the larger is w(q, d), the stronger is the relation between q and
d. Also, document nodes with high degrees in G indicate documents that are
reachable by many different queries, such as the home page of a large web portal
or an auction site; similarly, query nodes with high degrees in G indicate queries
that are not very precise, perhaps polysemous queries.

In this paper, we introduce two new variants of the click graph: the view graph
and the anti-click graph. The view graph defines an edge (q, d) if the document d
is in the list of results for query q. The anti-click graph defines an edge (q, d) if d
has been ranked in the answers list for q before the first document that has been
clicked by a user. Anti-clicks provide negative feedback, indicating documents
that are less relevant for a query-user than the clicked documents.

Our main idea is to extract features from these three graphs in order to detect
(1) spam hosts, (2) spam-prone queries, and (3) polysemous queries.

We propose two types of features: syntactic and semantic. The syntactic
features, defined for document nodes, aim at capturing the query attractiveness of
a document: to which extent a document attracts distinct queries. The semantic
features are defined over all nodes, i.e., documents and queries, and aim at
capturing the semantic diversity of queries and documents. We measure semantic
diversity by exploiting a novel concept of entropy defined on the distribution of
inferred topics over documents and queries. In order to get these categories, we
follow [1, 4–6] and start from the labeling information available for a small set
of topically-categorized documents, derived from human-edited web directories
such as DMOZ, and propagating those topic labels to other unlabeled documents
and queries in the query graphs.

The three applications we consider in this paper are the following:
Host-spam detection. This is a well-known problem in Adversarial IR [7].
However, unlike known approaches, which concentrate on specific techniques
that spammers use to create their sites, we concentrate on the eventual outcome
of these techniques by detecting specific structural and content patterns in our
three query graphs. Our intuition is that spammers have an incentive to aim at
the top results of frequent queries, and to aim at queries that are semantically far
apart from each other in order to cover the largest web audience. So we use our
syntactic and semantic features in order to detect those “query-attracting” hosts
and improve known (host-)spam detection algorithms. Recently, usage data is
being adopted in the literature as a source of information for spam detection.
In [8] query logs were used to extract frequent query terms that are likely to
appear in spam pages. In [9], query logs as well as browse logs from a toolbar were
used to detect spam pages, using query independent features such as number of
visits from search engines versus number of visits from browsing activity.

For the task of spam detection, our experiments show that we are able to
achieve comparable accuracy with the results of [8] while ignoring the content
of documents.
Query-spam detection. We are interested in detecting queries that generate a
high number of spam pages placed in the top positions of their results. Detecting



such queries can be used for improving the quality of search results by, say,
applying a more aggressive spam threshold, or by using those queries to design
more sophisticated spam-detection algorithms. To our knowledge, this is the first
paper in the literature that addresses the problem of detecting spam-attracting
queries. Our experiments show that we are able to detect spam-attracting queries
with a reasonable level of accuracy.
Query polysemy. Assessing the extent to which a query is polysemous (one
classic example is the query “jaguar”) can provide useful information for im-
proving the quality of search results. For example, a search engine might take into
account the context of a polysemous query, e.g., previous queries issued by the
user, or user profile, in order to produce more accurate results. Our contribution
in this paper consists of exploiting user feedback and query-log data in a novel
way in order to measure the ambiguity of queries. For evaluating our approach,
we built two benchmark datasets for detecting polysemous queries, and using
query-graph features and a multi-level perceptron neural-network algorithm we
obtain classification accuracy of 31% (difficult dataset) and 82% (easy dataset).

The rest of the paper is organized as follows. Section 2 discusses previous
work, while Section 3 introduces our notation. In Section 4 we propose novel fea-
tures for spam detection and query polysemy detection. In Section 5 we describe
in more details our three applications and discuss our experimental results.

2 Related work

Query log mining has received substantial attention in the last years (see e.g., [2]
and references therein) in the context of query suggestions, query expansion or
clustering, enriching Web taxonomies [10], query classification [11, 6, 12, 1], poly-
semous word detection [13], boosting search-engine efficacy [14] or efficiency [15],
building sets of popular queries for spam detection [16, 8], etc. In our work we
use query-log graphs in a novel way to make one step further in three applica-
tions: detection of polysemous queries, spam sites, and spam queries. Below, we
comment the literature which relates more with our results, and highlight the
main differences between our and known techniques.
Query classification. This problem consists of classifying queries according to
a set of predefined topics. Given that queries contain very few terms, successful
approaches (e.g., [11]) employ snippets, and other meta-information. Some of
the features we compute are based on propagation of DMOZ categories like [6],
but our paper differentiate from this like of work because our ultimate goal is
not query/document classification.
Finding ambiguous queries. Measuring ambiguity of queries and their rela-
tion in information retrieval has been studied extensively in the literature, e.g.,
see [17–20]. These approach use natural-language processing techniques, such as
language models, WordNet, and thesauri, and thus they are significantly differ-
ent than our method. More in-spirit to our approach are the papers of Baeza-
Yates [13], Qiu et al. [4], and Song et al. [5], in the sense that user feedback
in query-log mining is used for detecting polysemous queries. However, these



approaches differ completely from our proposal since we utilize novel concepts
of query-log graphs, we suggest new algorithms for propagating topic labels on
the graphs, and we propose new entropy-based measures.
Propagation-based methods. The idea of propagating meta-information
(query content, document content, topics, etc.) by using the link structure of
the Web graph or the click graph has been used in the past to derive metrics
for query classification, see e.g. [14, 6, 3, 21]. Our paper takes inspiration from
those ideas, and propagates category-based taxonomies on our three graphs (see
Section 3). However, unlike those papers, we are not interested in the semantic
proximity of two objects (queries or documents), but we are rather concerned
with the distribution of their topics over those taxonomies in order to infer some
of their properties (polysemy or spam).
Host-spam detection. A number of different techniques have been proposed
for dealing with web spam [8, 22–24, 16, 7]. Most of these methods are based
on either content analysis, link analysis, or query mining. Unlike all known ap-
proaches we concentrate on the final outcome of the spam-sites rather than on
a specific detection technique. Our approach is complementary to existing tech-
niques and can be use to strengthen current spam-detection mechanisms.

Some of the results we present about using the query logs for detecting spam,
were presented in preliminary form in [25].

3 Preliminaries and Notation

The click graph C = (VQ, VD, E) is an undirected, weighted and labeled bipartite
graph, consisting of a node set VQ ∪ VD and an edge set E. Nodes in VQ denote
the set of distinct queries, nodes in VD denote a set of distinct documents, and
an edge (q, d) ∈ E denotes that a user clicked on the document d ∈ VD after
submitting the query q ∈ VQ. Every edge (q, d) ∈ E has an associated weight
w(q, d). We will consider two weights: (i) the number of times a user clicked on
document d after submitting query q; (ii) the number of distinct search-sessions
in which q clicked on d. We use Nk(x) to denote the set of nodes in G that are
at distance exactly k from node x, and use N≤k(x) = ∪i=1,...,k Ni(x) to indicate
the set of nodes in G that are at distance at most k from node x. In addition to
the click-graph, we also define two alternative graphs:
The view graph. We define the click graph by considering as edges (q, d) all the
documents d in the results set of a query q. The view graph is a generalization of
the click graph since each click is also a view. Moreover a query could produce
no clicks and so be not present in the click graph, but be present in the view
graph. We notice that the view graph is more noisy than the click graph because
it does not contain any user feedback. Nonetheless it can be still useful to detect
spam sites, since spam sites try to be in the answer lists of different queries,
while users do not necessarily click on them.
The anticlick graph. We define the anti-click graph Ar by considering an edge
(q, d) whenever all the following conditions are met: (i) the document d appears
in the top-r positions of the ranked list of results for the query q, (ii) the user who



submitted q did not click on d, but (iii) that user clicked on another document
ranked below d. The anti-click graph intends to capture the negative judgment
that users give implicitly with their clicks. Negative feedback was also shown to
be useful by [26]. We used small values for r, considering that most users look
only at the first few results [27]. In our experiments we set r = 3 but other values
could be used in the future.

To reduce the sparsity of the data, the above graphs (click, view and anti-
click) can be defined on hosts rather than URLs, by replacing the set of document
nodes with their hosts. Therefore, in total, we define six types of graphs ({click,
view, anti-click} × {documents, hosts}). In the rest of the paper we will refer to
these graphs as Cd and Ch, Vd and Vh, Ad and Ah. When there is no need to
distinguish among those graphs we will use the generic name G. Additionally,
for every node x ∈ VQ ∪VD ∪VH , we associate a string `(x) describing the node:
if x ∈ VQ, `(x) is the query string, otherwise x ∈ VD or x ∈ VH then `(x) is the
document URL/host string.

4 Query-graph features

4.1 Syntactic features

The most obvious feature is simply the degree of a node. For a document d,
|N1(d)| is the number of queries adjacent to d (the set N1(d) provides a good
description of the content of document d [28, 15]). Similarly, for each query q we
consider |N1(q)|, the number of distinct documents clicked for q. To refine this
feature we concentrate on popular queries:

– For each document d, we define topQx(d) as the set of queries adjacent to
d in G and being among the fraction x of the most frequent queries in the
query log. We consider x = 0.01 and x = 1.0, where topQ1.0(d) = N1(d),
and select as syntactic feature the cardinality |topQx(u)|. We notice that
x = 0.01 works well as a feature for the applications we describe on this
paper, and similar values of x give similar results.

– For each document d, we define topTy(d) as the set of query terms (except
stop words) which compose the queries adjacent to d in G and being among
the fraction y of the most frequent terms in the query log. We consider y =
0.01 and y = 1.0, where topT1.0(u) is the dictionary of all query terms (except
stop words). Again, we select as another syntactic feature the cardinality
|topTy(d)|.
Note that topTy(u) is less precise than topQx(u) but it relaxes the depen-

dence on small variations in the query composition. The intuition underlying
the selection of the above two features is that the larger their values are, the
stronger and wider the query attractiveness of d should be and thus the more
evident should be that d is a spam page. Clearly, this may induce false positive
detection for good pages dealing with several topics (e.g., a multi-author blog).
However, those pages can be easily detected as non-spam by using classic link-
and/or content-based approaches (see section 5). Figure 1 shows the distribution
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Fig. 1. Left: distribution of topQ1.0(d) = N1(d). Right: distribution of topT1.0(d).

of these two quantities on the click-graph Cd defined over the one month query
log described in section 5.1. As in [1], a power law is observed.

4.2 Semantic features

The values of the syntactic features for a document d are not robust estimators
of the semantic coverage of that document. For instance, a site about music can
be reached by many distinct queries (e.g.: the names of many musicians) but still
be topically coherent. Also, the semantic coverage could be a useful measure in
order to make the detection of spam hosts more effective; for instance cloaked
hosts are returned as results to queries that are semantically diverse.

We then propose new measures of semantic coverage of a node (document or
query), based on a novel use of our graphs and of Web directories, such as the
Open Directory Project DMOZ.3 Our approach consists of two phases: (i) we first
categorize the subset of documents in VD that can be found in DMOZ, (ii) then, in
order to amplify the DMOZ coverage we propagate the categories assigned to the
(few) documents/hosts nodes of G to other document/host nodes. At the end,
many categories may be associated with a node of G, indicating that this node is
polysemous, in case of a query node, or multi-topical, in case of a document/host
node. Furthermore, each category will have associated an assignment strength
denoting the relation between the node content and the category label. We point
out that this multi- and weighted-category assignment will be deployed at the
end of this Section to derive three dispersion measures that capture the semantic
spread of every node (document or query) in G.
The category tree. Let TL be the category tree underlying the DMOZ directory,
pruned to the top L levels. In our experiments we consider L = 2, thus managing
577 categories. We assume that every category (node) c of TL is associated with
a string `(c), which denotes the name of the category. Our goal is to associate
one category tree TL(v) to each node v of the graph G (either query or document
node), in such a way that the score scorev(c) denotes the strength of the relation
3 http://www.dmoz.org/



between v and the topic c. We observe that TL(v) offers a good description of
the semantic coverage of the node v. We then assert that the “wider” is the
distribution of positive scores among the nodes of this tree, the wider should be
the semantic spread of node v.

In order to compute these trees, we associate an initial tree TL(v) to each
node v in G, with all the scores set to zero. (Recall that G may be any one of the
six graphs mentioned in Section 3.) Then, we scan through the document-nodes
d of G and check whether d is assigned to some category c of DMOZ. If so, we
increment by 1 the score of c and of all its ancestors in TL(d). Note that, if c
occurs deeper than level L in DMOZ, then we take its ancestor at level L, and
perform the above updates on this node (and its ancestors). We normalize all the
scores in such a way that

∑
c′∈child(c) scorev(c′) = 1. After the normalization

we can consider scorev(c) as the probability that node v is about sub-topic c′,
conditioned to the fact that it is about c.

Given the score values scorev(c), we also define score′v(c) = score′v(π(c))×
scorev(c), where π(c) is the parent of c in TL. In particular, for the category
node r at the root of TL(v), we define score′v(r) = 1 because we assume that
category r includes all possible topics. In some sense score′v(c) captures the
probability of reaching a category-node c of TL, when one starts on the root of
TL and moves downwards according to the scores scorev(c).

After the initialization step, few category trees are non-null because DMOZ
covers a small portion of the Web (see Table 1). Then we apply a category
propagation process whose goal is to spread the category scores to other query
and document nodes, driven by the structure of G and boosted by its edge
weights. We propose two propagation strategies.
Tree-based propagation by weighted average. The first propagation algo-
rithm views the graph G as a network of voters. Their contributions may sum up
over multiple paths, but also they decay with the lengths of those paths. Thus
we suggest to propagate the category scores through the graph G by boosting
their contributions according to the edge weights, and by damping their impact
according to the propagation distance. This way the value of scorev(c) will be
large if there is a large volume of short paths that start from vertex u with
scoreu(c) > 0 and end at vertex v. We implement these ideas as follows. At
the generic step i = 0, . . . , t, we scan through the nodes v in G and update the
scores of all categories c in TL(v) as:

scorei+1
v (c) += αi−1

∑

(v′,v)∈E
scoreiv′(c)× f(v′, v)

where score0
v(c) = scorev(c), f is a increasing function set to log2(1+w(v′, v)),

and α is a damping factor that takes into account the fact that the relatedness be-
tween two nodes at distance t in G decays with t. Notice that at step i, scorei

v(c)
receives contributions from all vertices in N≤i(v) properly weighted and scaled.
This means that, in computing score`

v(c) we are eventually accounting for the
volume of votes that suggest to attach category c to v’s content. In our experi-
ments α has been set to 0.85, as is usual in the PageRank algorithm, and t = 2,



which means that we propagate forth and back the category trees starting from
the document nodes of G. We normalize the scores of each category tree at each
propagation step in order to guarantee

∑
c′∈child(c) scorev(c′) = 1.

Propagation by random walk. Our second propagation algorithm flattens
the category structure by considering only the 17 top-level categories in DMOZ.
For a fixed category c, the random-walk approach models the behavior of a
random surfer that walks through the click-graph G and swaps her interests
from queries to documents, and reverse. This is what is done in [29] for pages
and [3] for query logs. The way the surfer chooses the next node among the ones
adjacent to the current one (being either a document or a query) depends on
their popularity among the search-engine users: The transition probability over
edge (v, v′) is proportional to w(v, v′)/

∑
z w(v, z) [3], where the weight w(·)

can be defined either in terms of number of clicks or on the number of distinct
search-sessions (we use the first one). The surfer has no memory of her previous
location and sometimes she may restart (or “teleport” herself) to a document
belonging to category c [29], chosen among all those documents with probability
proportional to score′v(c). This way we take into account the relatedness of v’s
content with c’s topic. Notice that the restart of the random walk reaches only
document nodes and that, by using the scores score′v(c) instead of scorev(c),
we uncondition on the structure of the categories in the hierarchy tree.

By repeating this calculation for all categories of DMOZ in the 17 top-level
categories, we get the category trees for all nodes in G as probability distribution
p[v] over all the considered categories. In particular we consider the normalized
version of such vectors: p[v]/||p[v]||1.
Entropy-based semantic features. We propose three dispersion measures
that capture the semantic spread of a node v by exploiting its category tree.
Since scorev(c) captures the probability that the query or document v is related
to the topic c, the classic notion of entropy provides a good starting point for
the design of such measures. However, given that we want to preserve the tree
structure of the categories, we cannot use the classic definition directly. Therefore
we fix a level i in TL(v) and consider the conditional entropy

Hi(v) = −
∑

level(c)=i−1

p(c)
∑

c′∈child(c)

p(c′|c) log2 p(c
′|c),

where c ranges among the level-(i− 1) nodes of DMOZ, and

p(c′|c) =
scoreu(c′)∑

x∈child(c) scoreu(x)

is the probability to reach node c′ given that we are at its parent node c. There-
fore, Hi(v) measures the uncertainty of selecting a category at level i given that
we are at some category at level (i − 1). The larger is this uncertainty, the
wider should be the semantic coverage of v, and thus the stronger should be the
evidence that v is a polysemous query, or a document covering multiple topics.
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Fig. 2. Distributions in the click-graph of the first-level entropy H1, the second-level
entropy H2, and the entropy after random walk Hp.

Having fixed the maximum depth of the trees to L = 2, we define a first
measure of dispersion as follows: H(v) = βH1(v) + (1 − β)H2(v). In this case,
if β = 0 then the distribution among the level-2 categories dominates; if β = 1
then the distribution among the level-1 categories dominates; finally, if β =
0.5 then H(v) is the half of the joint entropy of the first two levels of TL(v).
Therefore by setting β = 0.75 we give a preference to the distribution in the
level-1 categories. In defining H(v), we use the intuition that categories at the
i-th level of DMOZ-taxonomy should be weighted more than categories in its (i+1)-
level. For example, consider a category tree T1 that has exactly k nodes with
positive scores and all nodes lie at the fist level; and consider a category tree T2

that has also k nodes with positive scores, but which lie at the second level. It
is intuitive that we should consider T1 more disperse than T2.

In a similar way we define the second measure for the semantic coverage of a
node v in the graph, called the joint entropy (HJ). Considering the nodes c on
level 2 of TL(v), we compute their joint probability as p(c) = p(c|parent(c)) ×
p(parent(c)). We then apply the standard entropy function over the resulting
probability distribution to obtain HJ .

As last semantic feature we compute the classic notion of entropy over the
vectors p[v] computed in the propagation based on random walk, where we
considered just the 17 top-level categories of DMOZ. We denote such measure as
Hp. This value is minimal if the vertex v has a non-zero score for exactly one
category, and maximal if v has the same score in all categories. This captures
the notion of polysemy that we are interested upon.

The distributions H1, H2 and Hp are shown in Figure 2. There are 17 top-
level categories in the dataset which means a maximum value of log2(17) ≈ 4.08
in H1 and Hp, and the number of second-level categories varies in different parts
of the taxonomy but documents seem to be highly concentrated on a few second-
level categories.

5 Applications

We describe three applications of the (syntactic and semantic) features intro-
duced in the previous section: detecting polysemous queries, detecting spam



Table 1. Statistics on the query graphs expressed
in percentage.

Document-level Host-level
Cd Ad Vd Ch Ah Vh

Queries 1.59M 0.75M 2.78M 1.59M 0.75M 2.78M
Docs/hosts 2.75M 1.31M 23.47M 0.83M 0.40M 3.08M

Edges 3.69M 1.67M 40.71M 3.50M 1.53M 3.45M

CD(0) 0.05 0.08 0.03 0.28 0.35 0.15
CQ(1) 0.18 0.24 0.39 0.58 0.75 0.92
CD(2) 0.22 0.22 0.45 0.70 0.75 0.94
CCmax 0.32 0.19 0.92 0.80 0.83 0.98
|CC| 0.21 0.23 0.007 0.08 0.06 0.006

Table 2. Top ambiguous and un-
ambiguous queries found on the
test set

Ambiguous

israel, addresses, indonesia,
turkey, brazil, taiwan, ikea,
films, germany, spain, tax,
history, bristol, romania

Unambiguous

acyclovir, lithospermum,
mencius, nelfinavir,

amiodarone, aqueducts,
balcombe, bergen-belsen

hosts, and detecting spam-attracting queries (a novel problem we introduce in
this paper).

5.1 Datasets

As dataset we used an in-house query log. We picked a sample consisting of about
1.6 million queries leading to clicks on about 2.8 million distinct documents.
The average number of terms per query is 3 in our sample. We also parsed the
DMOZ hierarchy, as of October 2007, which contained about 4.2 million distinct
documents in about 600 thousand distinct categories.

In Table 1, the number of query nodes, document (or host) nodes, and edges
is given for all six graphs extracted from the query log (both URL-based and
Host-based versions of our three graphs). In the table, CD(k) is the fraction of
documents (or hosts) covered by DMOZ after the k-th propagation step; CQ(k) is
the fraction of queries covered by DMOZ after the k-th propagation step; CCmax is
the size of the largest connected component, and |CC| is the number of connected
components, both given as as a fraction of all the nodes in the graph. The size
of the connected components follows a power-law distribution as in [1]. We also
note that two propagation steps are enough cover 20% of the click graph Cd,
and about 40% of view-graph on docs Vd and 90% of view-graph on hosts Vh

(which are indeed highly connected). Thus, the former graph induces a stronger
relation than the latter does.

Starting from this dataset we generate the graphs Cd, Vd and Ad together
with their host-based version (Ch, Vh and Ah). Over them we generate all the
syntactic and semantic features as described in sections 4.1 and 4.2. We also in-
clude also some statistical information about our graphs, as the number of clicks,
views, and anti-clicks per query and document. We computed these statistics in
two versions: discarding multiple clicks/views/anti-clicks in the same session for
the same query/document pair, or counting them. In total, we have 61 features
for each node.



5.2 Application to polysemy

First we split the queries into two sets: one containing unambiguous queries, and
the other containing ambiguous queries. The heuristic we used to build the set
of ambiguous queries was to consider a query ambiguous if it occurs as name of
two or more distinct categories of DMOZ. As an example “jaguar” is ambiguous
because it occurs in ”Shopping: Vehicles: . . . British: Jaguar” and ”Kids and
Teens: . . . : Animals: Mammals: Jaguar”. Instead, a string occurring as a name
of only one category, is considered unambiguous. In total we had 8,461 queries,
out of which 23% were ambiguous and the remaining 77% were unambiguous.

We built a fast decision tree (i.e. reptree as implemented in weka) as auto-
matic classifier, in order to capture the extent to which a query is polysemous.
After ten-fold cross-validation, the best performance we obtained was a 31.8%
of detection rate (true positives) with 8.8% rate of false negatives. The AUC of
this classifier was 0.728. Table 2 lists a sample of the top 15 queries (ordered by
confidence) that were considered to be ambiguous or non-ambiguous on a test
set (after training on 66% of the data, and testing on the rest).

Most of the queries considered to be ambiguous are names of countries, which
seems intuitive given that there can be many possible intents by users typing a
query like “taiwan”. Most of the queries considered to be unambiguous, on the
other hand, are technical terms, for instance, names of drugs.

The low detection rate achieved can be explained, in our opinion, by the fact
that it is in inherently hard to say if a query is ambiguous or not in absolute
terms. However, we can try to check if one query is more ambiguous than another
query. For this second task, we use pairs of queries and ask an automatic classifier
to learn to order them correctly using the features we provide.

We used WordNet,4 a free linguistic resource consisting of a large set of
annotated entities. We considered the “hypernym” relation that indicates that
one sense is more general than the other. For instance, going from specific to
general, a “horse” is an “equine”, which is a “mammal”, which is an “animal”,
which is a “living thing” and so on. Our learning task is, given a pair of queries
for which there exists a “hypernym” relation, identify which of the two is more
specific than the other. Using our features and a multi-level perceptron neural-
network algorithm we obtain an accuracy of 0.82, meaning that we classify 82%
of the pairs correctly (50% would be a random classification).

5.3 Application to Web spam

Finding Web spam pages. For building and testing our automatic classifier,
we use the hosts occurring in the click-graph Ch and in the WEBSPAM-UK2006
dataset [30]. A set of pre-computed content-based and link-based features is
available for this collection.5

Note that the search engine already filters out a large fraction of Web spam,
so the spam hosts that are clicked in the query log are either: high quality pages
4 http://wordnet.princeton.edu/
5 http://webspam.lip6.fr/
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Fig. 3. Distribution of entropy Hp as cal-
culated at the end of Section 4.2 for spam
and non-spam nodes.

Feature set Features TP FP F1 AUC

Content (C) 98 75.8% 9.8% 0.692 0.912
Links (L) 139 84.2% 9.5% 0.739 0.939
Usage (U) 61 54.2% 7.4% 0.557 0.872

C ∪ L 237 83.9% 8.6% 0.756 0.952
C ∪ U 159 68.4% 6.6% 0.693 0.917
L ∪ U 200 78.5% 6.5% 0.757 0.951

C ∪ L ∪ U 298 78.9% 6.2% 0.765 0.951

Fig. 4. Results for Web spam classifiers.

that use spam tricks according to the assessors of the collection, but that are
nevertheless valuable for users of the search engine; or pages that simply can de-
feat the automatic spam filter of the search engine. In any case, the performance
results that we report below are shown for the fraction of spam that is seen by
the users of the search engine.

Previous systems for Web spam detection and demotion [8, 23] are typically
based on two classes of features: content-based features (statistics on the text and
formatting of the pages) and link-based features (statistics on the web graph).
In this paper we introduce usage-based features, some of which are very good at
separating spam and normal hosts; in Figure 3 where the distributions of Hp in
Ch for spam hosts (lines) and normal hosts (bars) are clearly different.

We then used a cost-sensitive decision tree with bagging (for an introduction
on these techniques see [31]) and adopted the following performance measures:
the true positive rate TP (or recall), the false positive rate FP , the F1 metric,
which combines precision P and recall R by F1 = 2 PR

P+R , and the area under the
ROC curve (AUC). We compare the performance of our 61 usage-based features
against the 98 link-based and the 139 content-based features provided with the
dataset. Figure 4 reports the experimental results, in terms of F1 and AUC. We
notice that, in term of global accuracy, the classifiers (C ∪ L ∪ U), (C ∪ L) and
(L ∪ U) are comparable. Nevertheless the (L ∪ U)-classifier could be considered
an improvement on the previous methods for the following reasons:

– it uses less features than the (C ∪ L)-classifier introduced in [8].
– it does not need to look at the content of the pages.

Detecting Spam Queries. We refer to a spam-attracting query as a query that
has a high number of spam hosts in the set of its results. We start with Vh, the
view-graph at the host level, and keep only the hosts in Vh for which we have
a non-spam or spam label. We use the WEBSPAM-UK2006 dataset to obtain spam
and non-spam labels for a subset of the hosts in Vh. Next we define the spamicity
of a query as the number of results labeled as spam and shown to the user for
that query, over the total number of results labeled (spam or normal) and shown



to the user. For instance, a spamicity of 0.5 for a query q indicates that from
the labeled hosts present in the result set of q, half of them were spam.

To reduce the noise given the low coverage of our labels, we consider only the
set of queries for which we have at least 10 labeled hosts in the results shown to
the user. We pick a sample of 1.2 million queries. We use this number to ensure
that we have enough labeled data for a query before reading the fraction of spam
found in the results for that query.

Next we divide the queries into two groups: queries having spamicity ≥ 0.5
and queries having spamicity < 0.5. We then build a decision tree, and obtain an
AUC of 0.798, true positive rate of 73.7% with 29.0% of false positives. If instead
we consider the task of finding queries with spamicity=0 versus queries with
spamicity≥ 0.5, we obtain an AUC of 0.838 with a true positive rate of 74.0%
and false positive rate of 22.1%. These results suggest that usage data can be
used to automatically extract queries that are likely to be showing a substantial
amount of spam results; however, probably other features are required to improve
the accuracy of such a detection system.

6 Conclusions

In this paper we have considered the click graph, and two novel variants—the
view graph and the anti-click graph. We proposed syntactic and semantic fea-
tures extracted from these graphs and used them to address three applications:
query polysemy, document-spam detection and query-spam detection. Our ex-
periments have shown good performance, which sometimes improved known re-
sults, as occurred in Web spam detection were we can achieve the same perfor-
mance as known classifiers with less features and considering usage information.
Usage-based spam-detection methods are just starting to be explored [25, 9]. For
future work, we would like to refine the metrics we have proposed here and study
other potential applications in the future. Studying the individual impact of each
graph and feature we have introduced in this paper is another interesting topic.
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