
Chapter 5

Crawling the Infinite Web

We have seen in Chapter?? several scheduling policies for ordering pages during Web crawling. The ob-

jective of those policies is to retrieve “good” pages early in the crawl. We have considered that the Web

is bounded, but a large amount of the publicly available Web pages are generated dynamically upon re-

quest, and contain links to other dynamically generated pages. This usually results in Web sites that can be

considered to have arbitrarily many pages.

This poses a problem to Web crawling, as it must be done in such a way that itstops downloading pages

from each Web site at some point. But how deep must the crawler go?

In this chapter:

• We propose models for random surfing inside a Web site when the number ofpages isunbounded. For

that, we take the tree induced by the Web graph of a site, and study it by levels.

• We analyze these models, focusing on the question of how “deep” users go inside a Web site.

• We validate these models using actual data from Web sites, as well as using a link analysis measure

such as Pagerank [PBMW98].

The next section outlines the motivation of this work, namely, the existence of dynamic pages. In

Section 5.2, three models of random surfing in dynamic Web sites are presented and analyzed; in Section

5.3, these models are compared with actual data from the access log of several Web sites. The last section

concludes with some final remarks and recommendations for practical Web crawler implementations.

Portions of this chapter were presented in [BYC04].
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5.1 Static and dynamic pages

Most studies about the Web refer only to the “publicly indexable portion” [LG98], excluding a portion of the

Web that has been called “the hidden Web” [RGM01] or the “deep Web” [Ber01, GA04]. The non-indexable

portion is characterized as all the pages that normal users could eventually access, but automated agents such

as the crawlers used by search engines can not.

Certain pages are not indexable because they require previous registration or some special authorization

such as a password, or are only available when visited from within a certainnetwork, such as a corporate

intranet. Others aredynamic pages, generated after the request has been made. Some times they are not

indexable because they require certain parameters as input, e.g. query terms, and those query terms are

unknown at crawling time. The different portions of the Web are depicted inFigure 5.1.

Figure 5.1: The Web can be divided into password-protected and publiclyavailable, and into

dynamic and static pages.

However, many dynamic pages are indexable, as the parameters for creating them can be found by

following links. This is the case of, e.g. typical product catalogs in Web stores, in which there are links to

navigate the catalog without the user having to pose a query.

The Web is usually considered as a collection of pages, in the same sense asin traditional Information

Retrieval collections, but much larger. Under this assumption, the Web graph has a finite number of nodes in

which measures such as diameter are well defined. This is fundamentally wrong. The amount of information

in the Web at any given time is certainly finite, but when a dynamic page leads to another dynamic page,the

number of pages can be potentially infinite. Take for instance a dynamic page that implements a calendar,

you can always click on “next month” and from some point on there will be no more data items in the

calendar; humans can be reasonably sure that it is very unlikely to find events scheduled 50 years in advance,

but a crawler can not. A second example would be a calculator, such as a dynamic page that calculates

approximations ofπ using an iterative method. A crawler cannot tell when two pages reflect thesame

information. There are many more examples of “crawler traps” that involve loops and/or near-duplicates that

can be detected afterwards, but we want to avoid downloading them.

2



Also, personalization is a source of a large number of pages; if you go towww.amazon.com and start

browsing your favorite books, soon you will be presented with more items about the same topics and au-

tomatically generated lists of recommendations, as the Web site assembles a vectorof preferences of the

visitor. The visitor is, in fact, creating Web pages as it clicks on links, and anautomated agent such as a Web

crawler generates the same effect. This is a case of uncertainty, in which the instrument, the Web crawler,

affects the object it is attempting to measure.

This poses a problem to Web crawling, as it must be done in such a way that itstops downloading pages

from each Web site at some point. Most researchers usually take one of the following approaches to this:

Download only static pagesA common heuristic to do so is to avoid downloading URLs containing a ques-

tion mark, but this heuristic can fail as there are many URLs which are dynamically generated but do

not use the CGI standard, encoding the parameters in the rest of the URL.Also, a valuable fraction of

the publicly available Web pages is generated dynamically upon request, andit is not clear why those

pages should be penalized in favor of static pages.

Download dynamic pages only with one set of parametersWhen doing this, dynamic pages are either

downloaded with the set of parameters of the first time they are found, or withan empty set of pa-

rameters. The obvious drawback is that dynamic pages could query a database and a single set of

parameters cannot represent the contents of the database.

Download up to a maximum amount of pagesThis creates a data set that is highly dependent on the crawl-

ing strategy. Moreover, this cannot be used to compare, for instance, the amount of information on

different domains.

Download up to a certain amount of pages per domain nameAs a small sum has to be paid for register-

ing a domain name, there is a certain effort involved in creating a Web site under a domain name.

However, there are certain domain names such as “.co.uk” which are verylarge and might require

special rules.

Download up to a certain amount of levels per Web siteStarting from the home page of each Web site,

follow links up to a certain depth. This is the approach we consider in this paper, and the natural

question is: how deep must the crawler go?

The Web of dynamically generated content is crawled superficially by many Web crawlers, in some

cases because the crawler cannot tell a dynamic URL from a static one, and in other cases purposefully.

However, few crawlers will go deeper, unless they know when to stop and how to handle dynamic pages

with links to more dynamic pages. In our previous experiences with the WIRE crawler [BYC02], we usually

limit the depth at which pages are explored, typically to 5 links in dynamic pages and 15 links in static pages.

When we plot the number of pages at a given depth, a profile as the one shown in Figure 5.2 is obtained.
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Figure 5.2: Amount of static and dynamic pages at a given depth. Dynamic pages were crawled

up to 5 levels, and static pages up to 15 levels. At all depths,static pages represent a smaller

fraction of the Web than dynamic pages.

Notice that here we are not using the number of slashes in the URL, but using the real shortest distance

in links with the start page(s) of the Web site. The dynamic pages grow with depth, while the static pages

follow a different shape, with the maximum number of pages found around 2or 3 links deep; this is why

some search engines use the heuristic of following links to URLs that seems to hold dynamically generated

content only from pages with static content. This heuristic is valid while the amount of information in static

pages continues to be large, but that will not be the case in the near future, as large Web sites with only static

pages are very hard to maintain.

We deal with the problem of capturing a relevant portion of thedynamically generated content with

known parameters, while avoiding the download of too many pages. We are interested in knowingif a user

will ever see a dynamically generated page. If the probability is too low, should a search engine like to

retrieve that page? Clearly, from the Web site or the searcher’s point ofview, the answer should be yes, but

from the search engine’s point of view, the answer might be no.

5.2 Random surfer models for an infinite Web site

We will consider a Web siteS= (Pages,Links) as a set of pages under the same host name that forms a

directed graph. The nodes arePages= {P1,P2, . . .} and the arcs areLinkssuch that(Pi ,Pj) ∈ Links iff there

exists a hyperlink from pagePi to pagePj in the Web site.
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Definition (User session) We define a user sessionu as a finite sequence of page viewsu = (P1,P2, . . . ,Pn),

with Pi ∈ Pages, and(Pi ,Pi+1) ∈ Links. The first requestu0 does not need to be the start page located at the

root directory of the server, as some users may enter to Web site following alink to an internal page, e.g., if

they come from a search engine.

Definition (Page depth) For a pagePi and a sessionu, we define the depth of the page in the session,

depth(Pi ,u) as:

depth(Pi ,u) =







0 if Pi = u0

mindepth(Pj ,u)+1 Pj ∈ u, j < i,(Pj ,Pi) ∈ Links

The depth is basically the length of the shortest path from the start page through the pages actually seen

during a session. Note that the depth of a page is not only a function of the Web site structure, it is the

perceiveddepth during a particular sessionu.

Definition (Session depth) We define the depth of sessionu as maxdepth(Pi ,u) with Pi ∈ u. We are

interested in this variable as its distribution is relevant from the point of view ofsearch engines.

For random surfing, we can model each page inPagesas a state in a system, and each hyperlink in

Linksas a possible transition. This kind of model has been studied by Hubermanet al. [HPPL98, AH00].

We propose to use a related model that collapses multiple pages at the same level as a single node, as shown

in Figure 5.3. That is, the Web site graph is collapsed to a sequential list.

Figure 5.3: A Web site and a sequence of user actions can be modeled as a tree (left). If we

are concerned only with the depth at which users explore the Web site, we can collapse the tree

to a linked list of levels (right).

The advantage of modeling the Web site graph as a sequential list as that we do not need to model

exactly which page a user is visiting, because we do not need this informationas our main concern is at what
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depththe user is inside a Web site. Also, different Web sites have varying degrees of connectivity, so for

considering the entire Web site we would need to model both the number of out-links of each page and the

distribution of the overlap of out-links between pages.

At each step of the walk, the surfer can perform one of the following atomicactions: go to the next

level (actionnext), go back to the previous level (actionback), stay in the same level (actionstay), go to a

different previous level (actionprev), go to a different deeper level (actionf wd), go to the start page (action

start) or jump outside the Web site (actionjump).

For action jumpwe add an extra nodeEXIT to signal the end of a user session (closing the browser, or

going to a different Web site) as shown in Figure 5.4. Regarding this Web site, after leaving, users have only

one option: start again in a page with depth 0 (actionstart).

Figure 5.4: Representation of the different actions of the random surfer. The EXIT node

represents leaving the Web site, and the transition betweenthat node and the start level has

probability one.

As this nodeEXIT has a single out-going link, it does not affect the results for the other nodes if we

remove the nodeEXIT and change this by transitions going to the start levelL0. Another way to understand

it is that as this process has no memory,going back to the start page or starting a new session are equivalent,

so actionsjump and start are indistinguishable in terms of the resulting probability distribution for the

other nodes. As a response to the same issue, Leveneet al. [LBL01] proposed to use an absorbing state

representing leaving the Web site; but we cannot use this idea because wewant to calculate and compare

stationary probability distributions.

The set of atomic actions isA = {next,start/ jump,back,stay, prev, f wd} and the probabilities if the

user is currently at level̀, are:

• Pr(next|`): probability of advancing to the level`+1.

• Pr(back|`): probability of going back to the level`−1.
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• Pr(stay|`): probability of staying at the same level`.

• Pr(start, jump|`): probability of going to the start page of this session, when it is not the previous two

cases; this is equivalent in our model to begin a new session,

• Pr(prev|`): probability of going to a previous level that is neither the start level nor theimmediate

preceding level.

• Pr( f wd|`): probability of going to a following level that is not the next level.

As they are probabilities,∑action∈A Pr(action|`) = 1. The probability distribution of all levels at a given

time is the vectorx(t). When there exists a limit, we will call this limt→∞ x(t) = x.

In this paper, we study three models withPr(next|`) = q for all levels, i.e.: the probability of advancing

to the next level is constant. Our purpose is to predict how far will a real user go into a dynamically generated

Web site. If we know that, e.g.:x0 + x1 + x2 ≥ 0.9, then the crawler could decide to crawl just those three

levels.

The models we analyze were chosen to be as simple and intuitive as possible, though without sacrificing

correctness. We seek more than just fitting the distribution of user clicks, wewant to understand and explain

user behavior in terms of simple operations.

Our models are “birth-and-death” processes, because they have an interpretation in terms of each level

being a number representing the population of a certain species, and eachtransition between two levels

represents either a birth of a death of a member. In this context, we note in advance that any given model

in which from a certain point over the rate of death (going back to the first levels) exceeds the rate of birth

(going deeper), then the population will be bounded (the visits will be foundmostly in the first levels).

5.2.1 Model A: back one level at a time

In this model, with probabilityq the user will advance deeper, and with probability 1−q the user will go

back one level, as shown in Figure 5.5.

Figure 5.5: Model A, the user can go forward or backward one level at a time.

Transition probabilities are given by:

• Pr(next|`) = q
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• Pr(back|`) = 1−q for ` ≥ 1

• Pr(stay|`) = 1−q for ` = 0

• Pr(start, jump|`) = 0

• Pr(prev|`) = Pr( f wd|`) = 0

A stable statex is characterized by:

xi = qxi−1 +(1−q)xi+1 (∀i ≥ 1)

x0 = (1−q)x0 +(1−q)x1

The solution to this recurrence is:

xi = x0

(

q
1−q

)i

(∀i ≥ 1) .

If q≥ 1/2 then the solution isxi = 0, andx∞ = 1, so we have an asymptotic absorbing state. In our framework

this means that no depth boundary can ensure a certain proportion of pages visited by the users. When

q < 1/2 and we impose the normalization constraint,∑i≥0xi = 1, we have a geometric distribution:

xi =

(

1−2q
1−q

)(

q
1−q

)i

The cumulative probability of levels 0. . .k is:

k

∑
i=0

xi = 1−

(

q
1−q

)k+1

This distribution is shown in Figure 5.6. We also calculate the session length, if we consider that a

session ends when the user returns to level zero, as actionsstart and jumpare equivalent. This is equivalent

to the average return time to the origin in a Markov chain, which is 1/x0 [MT93]. Hence,E(|u|) = 1−q
1−2q.

5.2.2 Model B: back to the first level

In this model, the user will go back to the start page of the session with probability 1 −q. This is shown in

Figure 5.7.

The transition probabilities are given by:

• Pr(next|`) = q

• Pr(back|`) = 1−q if ` = 1, 0 otherwise

• Pr(stay|`) = 1−q for ` = 0
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Figure 5.6: Distribution of visits per depth predicted by model A.

Figure 5.7: Model B, users can go forward one level at a time, or they can goback to the first

level either by going to the start page, or by starting a new session.

• Pr(start, jump|`) = 1−q for ` ≥ 2

• Pr(prev|`) = Pr( f wd|`) = 0

A stable statex is characterized by:

x0 = (1−q)∑
i≥0

xi = (1−q)

xi = qxi−1 (∀i ≥ 1)

and∑i≥0xi = 1.

As we haveq < 1 we have another geometric distribution:

xi = (1−q)qi

The cumulative probability of levels 0..k is:

k

∑
i=0

xi = 1−qk+1
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This distribution is shown in Figure 5.8. In this case we haveE(|u|) = 1
1−q.
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Figure 5.8: Distribution of visits per depth predicted by model B.

5.2.3 Model C: back to any previous level

In this model, the user can either discover a new level with probabilityq, or go back to a previous visited

level with probability 1−q. If a user decides to go back to a previously seen level, the level will chosen

uniformly from the set of visited levels (including the current one), as shown in the Figure 5.9.

Figure 5.9: Model C: the user can go forward one level at a time, and can go back to previous

levels with uniform probability.

The transition probabilities are given by:

• Pr(next|`) = q

• Pr(back|`) = 1−q/(`+1) for ` ≥ 1

• Pr(stay|`) = 1−q/(`+1)

• Pr(start, jump|`) = 1−q/(`+1) for ` ≥ 2
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• Pr(prev|`) = 1−q/(`+1) for ` ≥ 3

• Pr( f wd|`) = 0

A stable statex is characterized by:

x0 = (1−q) ∑
k≥0

xk

k+1

xi = qxi−1 +(1−q)∑
k≥i

xk

k+1
(∀i > 1)

and∑i≥0xi = 1.

We obtain a solution of the form:

xi = x0(i +1)qi

Imposing the normalization constraint, this yields:

xi = (1−q)2(i +1)qi

The cumulative probability of levels 0..k is:

k

∑
i=0

xi = 1− (2+k− (k+1)q)qk+1

This distribution is shown in Figure 5.10. In this case we haveE(|u|) = 1
(1−q)2 .
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Figure 5.10: Distribution of visits per depth predicted by model C.
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5.2.4 Model comparison

We can see that ifq≤ 0.4, then in these models there is no need for the crawler to go past depth 3 or 4to

capture more than 90% of the pages a random surfer will actually visit, and ifq is larger, say, 0.6, then the

crawler must go to depth 6 or 7 to capture the same amount of page views.

Note that the cumulative distribution obtained with model A (“back one level”) using parameterqA, and

model B (“back to home”) using parameterqB are equivalent if:

qA =
qB

1+qB
.

So, as the distribution of session depths is equal, except for a transformation in the parameterq, we will

consider only model B for charting and fitting the distributions of session depth.

It is worth noticing that a good model should approximate both the distribution ofsession depth and the

distribution of session length. Table 5.1 shows the predicted session lengths.

Table 5.1: Predicted average session length for the models, with different values ofq.

q Model A Model B Model C

0.1 1.13 1.11 1.23

0.2 1.33 1.25 1.56

0.3 1.75 1.43 2.04

0.4 3.00 1.67 2.78

0.5 – 2.00 4.00

0.6 – 2.50 6.25

0.7 – 3.34 11.11

0.8 – 5.00 25.00

0.9 – 10.00 100.00

In Table 5.1 we can see that although the distribution of session depth is the same for models A and

B, model B predicts shorter sessions. Observed average session lengths in the studied Web sites are mostly

between 2 and 3, so reasonable values forq lie between 0.4 and 0.6.

5.3 Data from user sessions in Web sites

We studied real user sessions on 13 different Web sites in the US, Spain,Italy and Chile, including commer-

cial and educational sites, non-governmental organizations, and sites inwhich collaborative forums play a

major role, also known as “Blogs”.
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We obtained access logs with anonymous IP addresses from these Web sites, and processed them to

obtain user sessions:

• Sort the logs by IP address of the client, then by access time stamp.

• Consider onlyGET requests for static and dynamic HTML pages or documents such as Word, PDF or

Postscript.

• Consider that a session expires after 30 minutes of inactivity, as this is commonin log file analysis

software, and is based on empirical data [CP95].

• Consider that a session expires if theUser-Agent changes [CMS99], as a way of overcoming the issue

that multiple clients can be behind the same IP address.

• Consider multiple consecutive hits to the same page (page reload) as a single page view.

• In pages with frames, consider all the frames as a single page, this required manual inspection of pages

with frames.

• Ignore hits to Web applications such as e-mail or content management systems, as they neither respond

to the logic of page browsing, nor are usually accessible by Web crawlers.

• Expand a session with missing pages (e.g.: if the user clicks “back” in his browser, and then follow a

link). This information is obtained from theReferrer field, and is a way of partially overcoming the

issue of caching. Note that, as re-visits are not always recorded because of caching [TG97], data from

log filesoverestimates the depth at which users spent most of the time, so user visits could be actually

even less deep.

Additionally, manual inspection of the data led to the following heuristics to discard automated agents:

• Identify robots by their accesses to the/robots.txt file, as suggested by Tan and Kumar [TK02].

• Identify robots by knownUser-Agent fields.

• Ignore malicious hits searching for security holes, which are usually a sequence of requests searching

for buffer overflows or other software bugs. These requests are usually done by automated agents like

Nessus [Der04].

5.3.1 General characteristics of user sessions

The characteristics of the sample, as well as the results of fitting models B and Cto the data are summarized

in Table 5.2. The names of the Web sites are not public because some of the logfiles, specially those of

commercial entities, were obtained under the condition of publishing only the statistical results.
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Table 5.2: Characteristics of the studied Web sites. The number of usersessions does not

reflect the relative traffic of the Web sites, as it was obtained in different time periods. The

average number of page views per session is larger in Blogs. “Root entry” is the fraction of

sessions starting in the home page.

Code Type Country Recorded Average Average Root

sessions session length max. depth entry

E1 Educational Chile 5,500 2.26 0.98 84%

E2 Educational Spain 3,600 2.82 1.41 68%

E3 Educational US 71,300 3.10 1.31 42%

C1 Commercial Chile 12,500 2.85 0.99 38%

C2 Commercial Chile 9,600 2.12 1.01 32%

R1 Reference Chile 36,700 2.08 0.95 11%

R2 Reference Chile 14,000 2.72 1.21 22%

O1 Organization Italy 10,700 2.93 1.97 63%

O2 Organization US 4,500 2.50 1.13 1%

OB1 Organization + Blog Chile 10,000 3.73 1.89 31%

OB2 Organization + Blog Chile 2,000 5.58 2.48 84%

B1 Blog Chile 1,800 9.72 3.56 39%

B2 Blog Chile 3,800 10.39 2.31 21%

By inspecting Table 5.2, we observe that the average session length involves about 2 to 3 pages, and

user sessions in Blogs are larger than in the other Web sites. This is reasonable as Web postings are very

short, so a user reads several of them during a session.

5.3.2 Distribution of visits per depth

Figure 5.11 shows the cumulative distribution of visits per page depth to Web sites. We can see that at least

80%-95% of the visits occur at depth≤ 4 (this is, no more than four “clicks” away from the entry page). It

is also noticeable that about 30%-50% of the sessions include only the startpage.

The distribution of visits per depth follows a power law, as shown in Figure 5.12. We only selected the

log files with more than 10,000 sessions recorded in order to have enough sessions across the entire range of

the figure, which is 30 levels.

An interesting observation about the distribution session lengths is that although they are longer in

Blogs, they are not much deeper than in the other Web sites, as shown in Table 5.2. This led us to study

the relationship between session length and session depth. The result is shown in Figure 5.13, which uses
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information from all our samples including Blogs. Session depth grows slower than session length, and even

long sessions, which are very rare, are not so deep. User browsingis certainly not depth-first.
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The discrepancy between session length and depth is important from the point of view of an alternative

model. Suppose the user chooses a session length at random before entering the Web site (this session length

could reflect that the user has a certain amount of time or interest in the topic). In this model, the average

session depth could be overestimated if we do not account for the fact that the browsing pattern is not depth-

first. Figure 5.14 shows the session length distribution which follows a powerlaw with parameter almost -2.

This differs from the results of Huberman that had parameter -3/2 [HPPL98].
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Table 5.3: Results of fitting models B (equivalent to model A) and C to thedistribution of visits

per depth in the studied Web sites. The minimum fitting error for each Web site is shown in

bold face.

Model B Model C

Code q Error q Error

Educ. 1 0.51 0.88% 0.33 3.69%

Educ. 2 0.51 2.29% 0.32 4.11%

Educ. 3 0.64 0.72% 0.45 3.65%

Com. 1 0.55 0.39% 0.36 2.90%

Com. 2 0.62 5.17% 0.41 10.48%

Ref. 1 0.54 2.96% 0.34 6.85%

Ref. 2 0.59 2.75% 0.39 6.11%

Org. 1 0.54 2.36% 0.35 2.27%

Org. 2 0.62 2.31% 0.42 5.95%

Org. + Blog 1 0.65 2.07% 0.46 5.20%

Org. + Blog 2 0.72 0.35% 0.54 2.00%

Blog 1 0.79 0.88% 0.63 0.70%

Blog 2 0.78 1.95% 0.63 1.01%

5.4 Model fit

We fitted the models of cumulative depth to the data from Web sites. The results are presented in Table 5.3

and Figure 5.18. In general, the curves produced by model B (and model A) are a better approximation to

the user sessions than the distribution produced by model C, except for Blogs, as seen in Figure 5.19. The

approximation is good for characterizing session depth, with error in general lower than 5%.

We also studied the empirical values for the distribution of the different actions at different levels in the

Web site. We averaged this distribution across all the studied Web sites at different depths. The results are

shown in Table 5.4, in which we consider all the Web sites except for Blogs.

Inspecting Table 5.4, we can see that the actionsnext, jump andbackare the more important ones,

which is evidence for the adequacy of models A (back one level) and modelB (back to start level).

We can see in Figure 5.15 thatPr(next|`) does not vary too much, and lies between 0.45 and 0.6,

increasing as̀ grows. This is reasonable as a user that already have seen several pages is more likely to

follow a link. From the point of view of our models, it is certainly not constant,but is almost constant for

the first five levels which are the relevant ones. On the other hand,prevandbackare closer to constant.
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Table 5.4: Average distribution of the different actions in user sessions of the studied Web

sites, except for Blogs. Transitions with values greater than 0.1 are shown in boldface.

Level Observations Next Start Jump Back Stay Prev Fwd

0 247985 0.457 – 0.527 – 0.008 – 0.000

1 120482 0.459 – 0.332 0.185 0.017 – 0.000

2 70911 0.462 0.111 0.235 0.1710.014 – 0.001

3 42311 0.497 0.065 0.186 0.159 0.017 0.069 0.001

4 27129 0.514 0.057 0.157 0.171 0.009 0.088 0.002

5 17544 0.549 0.048 0.138 0.143 0.009 0.108 0.002

6 10296 0.555 0.037 0.133 0.155 0.009 0.106 0.002

7 6326 0.596 0.033 0.135 0.113 0.006 0.113 0.002

8 4200 0.637 0.024 0.104 0.127 0.006 0.096 0.002

9 2782 0.663 0.015 0.108 0.113 0.006 0.089 0.002

10 2089 0.662 0.037 0.084 0.120 0.005 0.086 0.003

11 1649 0.656 0.020 0.076 0.119 0.018 0.105 0.004

12 1273 0.687 0.040 0.091 0.091 0.007 0.082 0.001

13 1008 0.734 0.015 0.058 0.112 0.005 0.054 0.019

14 814 0.716 0.005 0.051 0.113 0.015 0.080 0.019

15 666 0.762 0.025 0.056 0.091 0.008 0.041 0.017
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Figure 5.15: Experimental values for our atomic actions.
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Actionsstart, stayand f wd are not very common. These actions include visits to pages that have been

already seen, but it seems that pages are only re-visited by going back one level.

5.5 Conclusions

The models and the empirical data presented lead us to the following characterization of user sessions: they

can be modeled as a random surfer that either advances one level with probability q, or leaves the Web site

with probability 1−q. In generalq ≈ 0.45−0.55 for the first few levels, and thenq ≈ 0.65−0.70. This

simplified model is good enough for representing the data for Web sites, but:

• We could also consider Model A (back one level at a time), which is equivalent in terms of cumulative

probability per level, except for a change in the parameters. Based on theempirical data, we observe

that users at first just leave the Web site while browsing (Model B), but after several clicks, they are

more likely to go back one level (Model A).

• A more complex model could be derived from empirical data, particularly onethat considers thatq

depends oǹ. We considered that for deciding when to stop while doing Web crawling, thesimple

model is good enough.

• Model C appears to be better for Blogs. A similar study to this one, focused only in the access logs of

Blogs seems a reasonable thing to do since Blogs represent a growing portion of on-line pages.

In all cases, the models and the data show evidence of a distribution of visits that is strongly biased to

the first few levels of the Web site. According to this distribution, more than 90%of the visits are closer than

3 to 4 clicks away from the entry page in most of the Web sites. In the case of Blogs, we observed deeper

user sessions, with 90% of the visits within 6 to 7 clicks away from the entry page. Although our models do

not fit well for deep sessions, they are accurate for the first five relevant levels. Also, we would need much

more data to get significant results for over six levels.

In theory, as internal pages can be starting points, it could be concludedthat Web crawlers must always

download entire Web sites. However, entry pages are usually only in the first few levels of a Web site. If we

consider the physical page depth in the directory hierarchy of a Web site,we observe that the frequency of

surfing entry points per level rapidly decreases, as shown in Figure 5.16. This is consistent with the findings

of Eiron et al.; they observed that “when links are external to a site, they tend to link to the top level of the

site” [EMT04].

Link analysis, specifically Pagerank, provides more evidence for our conclusions. We asked, what

fraction of the total Pagerank score is captured by the pages on the first` levels of the Web sites? To

answer this, we crawled a large portion of the Chilean Web (.cl) obtaining around 3 million pages in April of
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Figure 5.16: Fraction of different Web pages seen at a given depth, and fraction of entry pages

at the same depth, considering the directory structure, in the studied Web sites. Frequencies are

normalized relative to all pages.

2004, using 150 thousand seed pages that found 53 thousand Web sites. Figure 5.17 shows the cumulative

Pagerank score for this sample. Again, the first five levels capture more than 80% of the best pages. Note

that the levels here are obtained in terms of the global Web structure, considering internal and external links,

not user sessions. These results are consistent with the findings by Najork and Wiener [NW01].
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Figure 5.17: Cumulative Pagerank by page levels in a large sample of the Chilean Web.

These models and observations could be used by a search engine, and they can also account for dif-

ferences in Web sites. For instance, if the search engine’s crawler performs a breadth-first crawling and can

measure the ratio of new URLs from a Web site it is adding to its queue vs. seenURLs, then it should be able

to infer how deep to crawl that specific Web site. The work we presented inthis article provides a framework
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for that kind of adaptivity.

An interesting enhancement of the models shown here is to consider the content of the pages to detect

duplicates and near-duplicates. In our model, downloading a duplicate page should be equivalent to going

back to the level at that we visited that page for the first time. A more detailed analysis could also consider

the distribution of terms in Web pages and anchor text as the user browses through a Web site.

A different class of models for user browsing, including models based oneconomical decisions could be

used, but those models should be able to fit both, the distribution of session length and the expected session

depth.

As the amount of on-line content that people, organizations and businessare willing to publish grows,

more Web sites will be built using Web pages that are dynamically generated, so those pages cannot be

ignored by search engines. Our aim is to generate guidelines to crawl these new, practically infinite, Web

sites.

21



Educ. 1 Educ. 2

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8

Actual data
Model B: q = 0.51, err = 0.88%
Model C: q = 0.33, err = 3.69%

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8

Actual data
Model B: q = 0.51, err = 2.29%
Model C: q = 0.32, err = 4.11%

Educ. 3

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8

Actual data
Model B: q = 0.64, err = 0.72%
Model C: q = 0.45, err = 3.65%

Com. 1 Com. 2

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8

Actual data
Model B: q = 0.55, err = 0.39%
Model C: q = 0.36, err = 2.90%

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3  4  5  6  7  8

Actual data
Model B: q = 0.62, err = 5.17%

Model C: q = 0.41, err = 10.48%

Figure 5.18: Fit of the models to actual data, except for Blogs and non-governmental organi-

zations with Blogs. Model B (back to start level), has smaller errors for most Web sites. The

asymptotic standard error for the fit of this model is 5% in theworst case, and consistently less

than 3% for all the other cases. Note that we have zoomed in into the top portion of the graph

(continues on the next page).
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Figure 5.18(cont.)
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Figure 5.19: Fit of the models to actual data in the case of Blogs. In this case user sessions tend

to go deeper inside the Website because more pages are visited per session, probably because

Blog postings tend to be short.
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