Chapter 5

Crawling the Infinite Web

We have seen in Chapt@f several scheduling policies for ordering pages during Web crawlifg ob-
jective of those policies is to retrieve “good” pages early in the crawl. We lcansidered that the Web
is bounded, but a large amount of the publicly available Web pages aszageth dynamically upon re-
guest, and contain links to other dynamically generated pages. This usegllysrin Web sites that can be
considered to have arbitrarily many pages.

This poses a problem to Web crawling, as it must be done in such a waystaistdownloading pages
from each Web site at some point. But how deep must the crawler go?

In this chapter:

e \We propose models for random surfing inside a Web site when the numpages isinboundedFor
that, we take the tree induced by the Web graph of a site, and study it by. levels

¢ We analyze these models, focusing on the question of how “deep” us@rsige a Web site.

e We validate these models using actual data from Web sites, as well as usikgpadiysis measure
such as Pagerank [PBMW93].

The next section outlines the motivation of this work, namely, the existencgrafniic pages. In
Section 5.2, three models of random surfing in dynamic Web sites are fésard analyzed; in Section
5.3, these models are compared with actual data from the access log mafl $&gb sites. The last section
concludes with some final remarks and recommendations for practical Mietecimplementations.

Portions of this chapter were presented in [BYCO04].



5.1 Static and dynamic pages

Most studies about the Web refer only to the “publicly indexable portio&9B], excluding a portion of the
Web that has been called “the hidden Web” [RGMO01] or the “deep Webt(B, GA04]. The non-indexable
portion is characterized as all the pages that normal users could eifeatic@ss, but automated agents such
as the crawlers used by search engines can not.

Certain pages are not indexable because they require previousaggystir some special authorization
such as a password, or are only available when visited from within a ceraivork, such as a corporate
intranet. Others ardynamic pagesgenerated after the request has been made. Some times they are not
indexable because they require certain parameters as input, e.g. quesy aed those query terms are
unknown at crawling time. The different portions of the Web are depict&iguare 5.1.

Dynamic pages

. Parameters known, | parameters unknown
Static pages |  or not required

Private Password or anthorization required
; Indexable by today's Domain-specific
Public g
search engines knowledge required
I

Figure 5.1: The Web can be divided into password-protected and puldigdjlable, and into
dynamic and static pages.

However, many dynamic pages are indexable, as the parameters fiingtbam can be found by
following links. This is the case of, e.g. typical product catalogs in Welestan which there are links to
navigate the catalog without the user having to pose a query.

The Web is usually considered as a collection of pages, in the same séngedgional Information
Retrieval collections, but much larger. Under this assumption, the Web giega finite number of nodes in
which measures such as diameter are well defined. This is fundamentatlg.\Wioe amount of information
in the Web at any given time is certainly finite, but when a dynamic page leadstoea dynamic pagehe
number of pages can be potentially infinifBake for instance a dynamic page that implements a calendar,
you can always click on “next month” and from some point on there will banore data items in the
calendar; humans can be reasonably sure that it is very unlikely to famdsescheduled 50 years in advance,
but a crawler can not. A second example would be a calculator, such ywsamit page that calculates
approximations ofit using an iterative method. A crawler cannot tell when two pages reflecsaimee
information. There are many more examples of “crawler traps” that invotyesl@and/or near-duplicates that
can be detected afterwards, but we want to avoid downloading them.



Also, personalization is a source of a large number of pages; if you gavtcamazon. comand start
browsing your favorite books, soon you will be presented with more iternatahe same topics and au-
tomatically generated lists of recommendations, as the Web site assembles aofigetderences of the
visitor. The visitor is, in fact, creating Web pages as it clicks on links, aralidéomated agent such as a Web
crawler generates the same effect. This is a case of uncertainty, in wkialstrument, the Web crawler,
affects the object it is attempting to measure.

This poses a problem to Web crawling, as it must be done in such a waystaistdownloading pages
from each Web site at some point. Most researchers usually take orefofltwing approaches to this:

Download only static pagesA common heuristic to do so is to avoid downloading URLS containing a ques-
tion mark, but this heuristic can fail as there are many URLs which are dyadyngenerated but do
not use the CGI standard, encoding the parameters in the rest of theAllRla valuable fraction of
the publicly available Web pages is generated dynamically upon request,sndt clear why those
pages should be penalized in favor of static pages.

Download dynamic pages only with one set of parameter&Vhen doing this, dynamic pages are either
downloaded with the set of parameters of the first time they are found, orawigmpty set of pa-
rameters. The obvious drawback is that dynamic pages could querylzasgatand a single set of
parameters cannot represent the contents of the database.

Download up to a maximum amount of pagesThis creates a data set that is highly dependent on the crawl-
ing strategy. Moreover, this cannot be used to compare, for instareantbunt of information on
different domains.

Download up to a certain amount of pages per domain nameAs a small sum has to be paid for register-
ing a domain name, there is a certain effort involved in creating a Web site andemain name.
However, there are certain domain names such as “.co.uk” which ardargesyand might require
special rules.

Download up to a certain amount of levels per Web siteStarting from the home page of each Web site,
follow links up to a certain depth. This is the approach we consider in thisrpapé the natural
guestion is: how deep must the crawler go?

The Web of dynamically generated content is crawled superficially by masly ahawlers, in some
cases because the crawler cannot tell a dynamic URL from a static cthén ather cases purposefully.
However, few crawlers will go deeper, unless they know when to stdphaw to handle dynamic pages
with links to more dynamic pages. In our previous experiences with the Wi&ker [BYCO02], we usually
limit the depth at which pages are explored, typically to 5 links in dynamic pagk$&links in static pages.
When we plot the number of pages at a given depth, a profile as the owe ghFigure 5.2 is obtained.
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Figure 5.2: Amount of static and dynamic pages at a given depth. Dynaagepwere crawled
up to 5 levels, and static pages up to 15 levels. At all detiadic pages represent a smaller
fraction of the Web than dynamic pages.

Notice that here we are not using the number of slashes in the URL, bgtthsimeal shortest distance
in links with the start page(s) of the Web site. The dynamic pages grow witi depile the static pages
follow a different shape, with the maximum number of pages found arounrd32links deep; this is why
some search engines use the heuristic of following links to URLSs that seero&ltdymamically generated
content only from pages with static content. This heuristic is valid while the atafumformation in static
pages continues to be large, but that will not be the case in the near, fagsueege Web sites with only static
pages are very hard to maintain.

We deal with the problem of capturing a relevant portion of digeaamically generated content with
known parameterswvhile avoiding the download of too many pages. We are interested in knafangser
will ever see a dynamically generated page. If the probability is too low,ldregearch engine like to
retrieve that page? Clearly, from the Web site or the searcher’s pourwsf the answer should be yes, but
from the search engine’s point of view, the answer might be no.

5.2 Random surfer models for an infinite Web site

We will consider a Web sit& = (PagesLinks) as a set of pages under the same host name that forms a
directed graph. The nodes dPages= {P1, P>, ...} and the arcs areinkssuch thai R, P;) € Linksiff there
exists a hyperlink from pag@ to pageP; in the Web site.



Definition (User session) We define a user sessiaras a finite sequence of page views (P, P,,...,Py),

with P € Pagesand(R, P 1) € Links The first requestiy does not need to be the start page located at the
root directory of the server, as some users may enter to Web site folloiimigta an internal page, e.g., if
they come from a search engine.

Definition (Page depth) For a pageP, and a session, we define the depth of the page in the session,
depthP,u) as:

if R = Uo
depthR,u) =
mindepthPj,u)+1 P;ecu,j<i,(P;,R) € Links

The depth is basically the length of the shortest path from the start paggthtiee pages actually seen
during a session. Note that the depth of a page is not only a function of ¢esité structure, it is the
perceiveddepth during a particular sessian

Definition (Session depth) We define the depth of sessionas maxdepthR,u) with B € u. We are
interested in this variable as its distribution is relevant from the point of vieseafch engines.

For random surfing, we can model each pag®agesas a state in a system, and each hyperlink in
Linksas a possible transition. This kind of model has been studied by Hubest@dn[HPPL98, AHOO].
We propose to use a related model that collapses multiple pages at the sdras &smgle node, as shown
in Figure 5.3. That is, the Web site graph is collapsed to a sequential list.

¢ O

Figure 5.3: A Web site and a sequence of user actions can be modeled as(&efte If we
are concerned only with the depth at which users explore thie $e, we can collapse the tree
to a linked list of levels (right).

The advantage of modeling the Web site graph as a sequential list as that meg deed to model
exactly which page a user is visiting, because we do not need this infornaatimur main concern is at what
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depththe user is inside a Web site. Also, different Web sites have varying elegifeconnectivity, so for
considering the entire Web site we would need to model both the number of ksitefirrach page and the
distribution of the overlap of out-links between pages.

At each step of the walk, the surfer can perform one of the following at@ttions: go to the next
level (actionnex?, go back to the previous level (actifwack), stay in the same level (actigtay), go to a
different previous level (actiopreV), go to a different deeper level (actidmd), go to the start page (action
start) or jump outside the Web site (actigamp).

For actionjumpwe add an extra nodeXl T to signal the end of a user session (closing the browser, or
going to a different Web site) as shown in Figure 5.4. Regarding this Welafiite leaving, users have only
one option: start again in a page with depth O (acstanrt).

Figure 5.4: Representation of the different actions of the random surfiehe EXIT node
represents leaving the Web site, and the transition betwesmode and the start level has
probability one.

As this nodeEXI T has a single out-going link, it does not affect the results for the othegsiddve
remove the nodeéXl T and change this by transitions going to the start léyelAnother way to understand
it is that as this process has no memaguing back to the start page or starting a new session are equivyalent
so actionsjump and start are indistinguishable in terms of the resulting probability distribution for the
other nodes. As a response to the same issue, Leatemle [LBLO1] proposed to use an absorbing state
representing leaving the Web site; but we cannot use this idea becausantvéo calculate and compare
stationary probability distributions.

The set of atomic actions is = {next start/ jump back stay prev fwd} and the probabilities if the
user is currently at leve, are:

e Pr(next/): probability of advancing to the levéH- 1.

e Pr(bacK/): probability of going back to the levél— 1.



Pr(stay/): probability of staying at the same lewel

Pr(start, jump|/¢): probability of going to the start page of this session, when it is not the preweo

cases; this is equivalent in our model to begin a new session,

Pr(prev/): probability of going to a previous level that is neither the start level noiirtireediate
preceding level.

Pr(fwd|¢): probability of going to a following level that is not the next level.

As they are probabilitiesy ¢ioncs Pr(action?) = 1. The probability distribution of all levels at a given
time is the vectok(t). When there exists a limit, we will call this limn. x(t) = x.

In this paper, we study three models wRh(next¢) = q for all levels, i.e.: the probability of advancing
to the next level is constant. Our purpose is to predict how far will a 1g=1 go into a dynamically generated
Web site. If we know that, e.gXp + X3 + X2 > 0.9, then the crawler could decide to crawl just those three

levels.

The models we analyze were chosen to be as simple and intuitive as possibg Without sacrificing
correctness. We seek more than just fitting the distribution of user clickwaneto understand and explain
user behavior in terms of simple operations.

Our models are “birth-and-death” processes, because they haviegrétation in terms of each level
being a number representing the population of a certain species, andraasition between two levels
represents either a birth of a death of a member. In this context, we noteanaalthat any given model
in which from a certain point over the rate of death (going back to the fivetdpexceeds the rate of birth
(going deeper), then the population will be bounded (the visits will be fonostly in the first levels).

5.2.1 Model A: back one level at a time

In this model, with probabilityq the user will advance deeper, and with probability ¢ the user will go
back one level, as shown in Figure 5.5.

Figure 5.5: Model A, the user can go forward or backward one level at a.time

Transition probabilities are given by:

e Pr(next/) =q



e Pr(backl()=1—qfor¢>1
e Pr(stayl)=1—qfor¢{=0
e Pr(start, jump¢) =0

e Pr(prev!) =Pr(fwd|¢) =0

A stable state is characterized by:

X = %1+ (1-0x41 (Viz1)
o = (1-gx+(1-ax

The solution to this recurrence is:

X —m(%q)i (Vi>1).

If g>1/2 then the solution ig = 0, andx. = 1, SO we have an asymptotic absorbing state. In our framework

this means that no depth boundary can ensure a certain proportion ed paited by the users. When
g < 1/2 and we impose the normalization constrajft,ox; = 1, we have a geometric distribution:

(26

The cumulative probability of levels.0.k is:

K q \k1
iZD 1-q

This distribution is shown in Figure 5.6. We also calculate the session lengtle, dowsider that a
session ends when the user returns to level zero, as astanand jumpare equivalent. This is equivalent
to the average return time to the origin in a Markov chain, whiclyig IMT93]. Hence E(|u|) = ll_;zqq

5.2.2 Model B: back to the first level

In this model, the user will go back to the start page of the session with ghitypdb— g. This is shown in
Figure 5.7.

The transition probabilities are given by:

e Pr(nexi¢) =q
e Pr(back/¢) =1—qif ¢ =1, 0 otherwise

e Pr(stayl) =1—qfor¢=0



Figure 5.7: Model B, users can go forward one level at a time, or they calbaglt to the first
level either by going to the start page, or by starting a nesgise.

e Pr(start, jump¢) =1—qfor¢>2
e Pr(prev/) =Pr(fwd|¢) =0

A stable state is characterized by:

X0 = (1_Q>%Xi:( —q)

>

X = Ox-1 (Vi>1)
andyi-oX = 1.

As we havey < 1 we have another geometric distribution:
X = (1-q)q

The cumulative probability of levels & is:
< k+1
x=1-q

2,
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This distribution is shown in Figure 5.8. In this case we hayei|) = 1—}q.

Cumulative probability

Figure 5.8: Distribution of visits per depth predicted by model B.

5.2.3 Model C: back to any previous level

In this model, the user can either discover a new level with probalgjlitr go back to a previous visited
level with probability 1— g. If a user decides to go back to a previously seen level, the level willechos
uniformly from the set of visited levels (including the current one), asvshia the Figure 5.9.

Figure 5.9: Model C: the user can go forward one level at a time, and caragk to previous
levels with uniform probability.

The transition probabilities are given by:

Pr(next/) =q

Pr(bacKl) =1—q/(¢+1)for¢>1

Pr(stay/) =1—q/({+1)

Pr(start, jump¢)=1—q/(¢+1) for ¢ >2
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o Pr(prey/)=1—-q/({+1)for¢>3

o Pr(fwd|¢) =0

A stable statex is characterized by:

X<
X = (1-0) )
( )k;kJrl

Xk .
X = oxat(1-q) ) —— (Vi>1)
! kzz,k+1

andyisox = 1.
We obtain a solution of the form:
x =x(i+1)q

Imposing the normalization constraint, this yields:
X =(1-a)?(+1)d

The cumulative probability of levels & is:

_ixi =1-(2+k—(k+1)q) g

1

This distribution is shown in Figure 5.10. In this case we haye|) = e

Cumulative probability

COOO00O0O00
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U [ocninococaoaoa®

Figure 5.10: Distribution of visits per depth predicted by model C.
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5.2.4 Model comparison

We can see that iff < 0.4, then in these models there is no need for the crawler to go past depthtd or 4
capture more than 90% of the pages a random surfer will actually visit, anid ifarger, say, ®, then the
crawler must go to depth 6 or 7 to capture the same amount of page views.

Note that the cumulative distribution obtained with model A (“back one leveif)jgisarametega, and

model B (“back to home”) using parametgy are equivalent if:

A 1+0s '

So, as the distribution of session depths is equal, except for a transifmmrimethe parameteg, we will
consider only model B for charting and fitting the distributions of sessiothdep

It is worth noticing that a good model should approximate both the distributieassion depth and the
distribution of session length. Table 5.1 shows the predicted session lengths

Table 5.1: Predicted average session length for the models, withrdiffesalues ofj.

g ModelA ModelB ModelC

0.1 1.13 1.11 1.23
0.2 1.33 1.25 1.56
0.3 1.75 1.43 2.04
0.4 3.00 1.67 2.78
0.5 - 2.00 4.00
0.6 - 2.50 6.25
0.7 - 3.34 11.11
0.8 — 5.00 25.00
0.9 - 10.00 100.00

In Table 5.1 we can see that although the distribution of session depth isntleefgamodels A and
B, model B predicts shorter sessions. Observed average sessitrslanthe studied Web sites are mostly

between 2 and 3, so reasonable valuegjfie between 04 and 06.

5.3 Data from user sessions in Web sites

We studied real user sessions on 13 different Web sites in the US, 8pbimnd Chile, including commer-
cial and educational sites, non-governmental organizations, and sitdsdh collaborative forums play a

major role, also known as “Blogs”.
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We obtained access logs with anonymous IP addresses from these Veelasiteprocessed them to
obtain user sessions:

e Sort the logs by IP address of the client, then by access time stamp.

e Consider onlyGET requests for static and dynamic HTML pages or documents such as VWP
Postscript.

e Consider that a session expires after 30 minutes of inactivity, as this is comnhag file analysis
software, and is based on empirical data [CP95].

e Consider that a session expires if thser - Agent changes [CMS99], as a way of overcoming the issue
that multiple clients can be behind the same IP address.

e Consider multiple consecutive hits to the same page (page reload) as a siggleew.

¢ In pages with frames, consider all the frames as a single page, this cemaraial inspection of pages
with frames.

¢ Ignore hits to Web applications such as e-mail or content management syasainsy neither respond
to the logic of page browsing, nor are usually accessible by Web crawlers

e Expand a session with missing pages (e.qg.: if the user clicks “back” in higskerpand then follow a
link). This information is obtained from thief err er field, and is a way of partially overcoming the
issue of caching. Note that, as re-visits are not always recorded$moécaching [TG97], data from
log filesoverestimates the depth at which users spent most of thedomeser visits could be actually
even less deep.

Additionally, manual inspection of the data led to the following heuristics to diseatomated agents:

o Identify robots by their accesses to threbot s. t xt file, as suggested by Tan and Kumar [TK02].
o Identify robots by knowruser - Agent fields.

¢ Ignore malicious hits searching for security holes, which are usuallywzeseq of requests searching
for buffer overflows or other software bugs. These requestssarally done by automated agents like
Nessus [Der04].

5.3.1 General characteristics of user sessions

The characteristics of the sample, as well as the results of fitting models B anth€data are summarized
in Table 5.2. The names of the Web sites are not public because some of tilledpgpecially those of
commercial entities, were obtained under the condition of publishing only ttistist@ results.
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Table 5.2: Characteristics of the studied Web sites. The number of sms&sions does not
reflect the relative traffic of the Web sites, as it was obtimedifferent time periods. The
average number of page views per session is larger in Bldgeot‘entry” is the fraction of

sessions starting in the home page.

Code Type Country Recorded Average Average Root
sessions  session length max. depth entry
El Educational Chile 5,500 2.26 0.98 84%
E2 Educational Spain 3,600 2.82 1.41 68%
E3 Educational us 71,300 3.10 1.31 42%
C1 Commercial Chile 12,500 2.85 0.99 38%
C2 Commercial Chile 9,600 2.12 1.01 32%
R1 Reference Chile 36,700 2.08 0.95 11%
R2 Reference Chile 14,000 2.72 1.21 22%
o1 Organization Italy 10,700 2.93 1.97 63%
02 Organization us 4,500 2.50 1.13 1%
OB1 Organization + Blog  Chile 10,000 3.73 1.89 31%
OB2 Organization + Blog  Chile 2,000 5.58 2.48 84%
Bl Blog Chile 1,800 9.72 3.56 39%
B2 Blog Chile 3,800 10.39 2.31 21%

By inspecting Table 5.2, we observe that the average session lengthesnaidout 2 to 3 pages, and
user sessions in Blogs are larger than in the other Web sites. This is abbsas Web postings are very
short, so a user reads several of them during a session.

5.3.2 Distribution of visits per depth

Figure 5.11 shows the cumulative distribution of visits per page depth to Web ¥itecan see that at least
80%-95% of the visits occur at depth4 (this is, no more than four “clicks” away from the entry page). It
is also noticeable that about 30%-50% of the sessions include only thpagart

The distribution of visits per depth follows a power law, as shown in Figur2.3Me only selected the
log files with more than 10,000 sessions recorded in order to have enesgjbrss across the entire range of
the figure, which is 30 levels.

An interesting observation about the distribution session lengths is that giftttbey are longer in
Blogs, they are not much deeper than in the other Web sites, as shownlén5T2b This led us to study
the relationship between session length and session depth. The resolvisishFigure 5.13, which uses
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Cumulative fraction of visits

Figure 5.11: Cumulative distribution of visits per level, from accesgdoof Web sites.
E=educational, C=commercial, O=non-governmental oggditn, OB=0rganization with on-
line forum, B=Blog (Web log or on-line forum).
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Figure 5.12: Distribution of visits per level. In this figure we only seled the log files with
more than 10,000 sessions recorded.

information from all our samples including Blogs. Session depth grows slihaa session length, and even
long sessions, which are very rare, are not so deep. User broigsiegainly not depth-first.
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Figure 5.13: Session length vs. average session depth in the studiedessons. Even very
long sessions, which are rare, are not very deep.

The discrepancy between session length and depth is important fromithh@fdew of an alternative
model. Suppose the user chooses a session length at random béfaregehe Web site (this session length
could reflect that the user has a certain amount of time or interest in the.tdpitt)is model, the average
session depth could be overestimated if we do not account for the fathéharowsing pattern is not depth-
first. Figure 5.14 shows the session length distribution which follows a plamewith parameter almost -2.
This differs from the results of Huberman that had parameter -3/2 [H8PL9
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Figure 5.14: Session length distribution.
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Table 5.3: Results of fitting models B (equivalent to model A) and C todiggribution of visits
per depth in the studied Web sites. The minimum fitting eroorefach Web site is shown in

bold face.

Model B Model C

Code q Error q Error
Educ. 1 0.51 0.88% 0.33 3.69%
Educ. 2 051 229% 0.32 4.11%
Educ. 3 0.64 0.72% 0.45 3.65%
Com. 1 0.55 0.39% 0.36 2.90%
Com. 2 0.62 5.17% 0.41 10.48%
Ref. 1 0.54 2.96% 0.34 6.85%
Ref. 2 0.59 2.75% 0.39 6.11%

Org. 1 0.54 2.36% 0.352.27%
Org. 2 0.62 2.31% 0.42 5.95%
Org. +Blogl 0.65 2.07% 0.46 5.20%
Org. +Blog2 0.72 0.35% 0.54 2.00%

Blog 1 0.79 0.88% 0.63 0.70%
Blog 2 0.78 1.95% 0.63 1.01%

5.4 Model fit

We fitted the models of cumulative depth to the data from Web sites. The resuftsesented in Table 5.3

and Figure 5.18. In general, the curves produced by model B (andlApdee a better approximation to

the user sessions than the distribution produced by model C, exceplbfys, Bis seen in Figure 5.19. The
approximation is good for characterizing session depth, with error inrgeliogver than 5%.

We also studied the empirical values for the distribution of the different extbdifferent levels in the
Web site. We averaged this distribution across all the studied Web sitesesediftiepths. The results are
shown in Table 5.4, in which we consider all the Web sites except for Blogs.

Inspecting Table 5.4, we can see that the actived, jump andbackare the more important ones,
which is evidence for the adequacy of models A (back one level) and rBo@ielck to start level).

We can see in Figure 5.15 thBt(next¢) does not vary too much, and lies betweeASand 06,
increasing ag grows. This is reasonable as a user that already have seen seggalip more likely to
follow a link. From the point of view of our models, it is certainly not constémit, is almost constant for
the first five levels which are the relevant ones. On the other haegandbackare closer to constant.
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Table 5.4: Average distribution of the different actions in user sessiof the studied Web
sites, except for Blogs. Transitions with values greatantd.1 are shown in boldface.

Level Observations Next Start Jump Back Stay Prev Fwd

0 247985 0.457 - 0.527 - 0.008 - 0.000
1 120482 0459 - 0.332 0.185 0.017 - 0.000
2 70911 0.462 0.111 0.235 0.1710.014 — 0.001
3 42311 0.497 0.065 0.186 0.159 0.017 0.069 0.001
4 27129 0.514 0.057 0.157 0.171 0.009 0.088 0.002
5 17544 0.549 0.048 0.138 0.143 0.009 0.108 0.002
6 10296 0.555 0.037 0.133 0.155 0.009 0.106 0.002
7 6326 0.596 0.033 0.135 0.113 0.006 0.113 0.002
8 4200 0.637 0.024 0.104 0.127 0.006 0.096 0.002
9 2782 0.663 0.015 0.108 0.113 0.006 0.089 0.002
10 2089 0.662 0.037 0.084 0.120 0.005 0.086 0.003
11 1649 0.656 0.020 0.076 0.119 0.018 0.105 0.004
12 1273 0.687 0.040 0.091 0.091 0.007 0.082 0.001
13 1008 0.734 0.015 0.058 0.112 0.005 0.054 0.019
14 814 0.716 0.005 0.051 0.113 0.015 0.080 0.019
15 666 0.762 0.025 0.056 0.091 0.008 0.041 0.017
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Figure 5.15: Experimental values for our atomic actions.
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Actionsstart, stayand fwd are not very common. These actions include visits to pages that have been

already seen, but it seems that pages are only re-visited by going badéwel.

5.5 Conclusions

The models and the empirical data presented lead us to the following chenataberof user sessions: they
can be modeled as a random surfer that either advances one level eltbpity g, or leaves the Web site
with probability 1— g. In generalg ~ 0.45— 0.55 for the first few levels, and thena 0.65— 0.70. This
simplified model is good enough for representing the data for Web sites, but:

¢ We could also consider Model A (back one level at a time), which is etprivén terms of cumulative
probability per level, except for a change in the parameters. Based emibieical data, we observe
that users at first just leave the Web site while browsing (Model B), thet several clicks, they are
more likely to go back one level (Model A).

e A more complex model could be derived from empirical data, particularlytbaeconsiders thaj
depends orf. We considered that for deciding when to stop while doing Web crawlingsithple
model is good enough.

e Model C appears to be better for Blogs. A similar study to this one, focuskydrothe access logs of
Blogs seems a reasonable thing to do since Blogs represent a growfiog pdron-line pages.

In all cases, the models and the data show evidence of a distribution of vidiis #trongly biased to
the first few levels of the Web site. According to this distribution, more than 8084e visits are closer than
3 to 4 clicks away from the entry page in most of the Web sites. In the caskog$,Bve observed deeper
user sessions, with 90% of the visits within 6 to 7 clicks away from the entrg.p&ighough our models do
not fit well for deep sessions, they are accurate for the first fiveaptdevels. Also, we would need much
more data to get significant results for over six levels.

In theory, as internal pages can be starting points, it could be condhdedeb crawlers must always
download entire Web sites. However, entry pages are usually only in ¢hécfiv levels of a Web site. If we
consider the physical page depth in the directory hierarchy of a Welngtebserve that the frequency of
surfing entry points per level rapidly decreases, as shown in Figuée Blils is consistent with the findings
of Eiron et al,; they observed that “when links are external to a site, they tend to link to phievel of the
site” [EMTOA4].

Link analysis, specifically Pagerank, provides more evidence for onclasions. We asked, what
fraction of the total Pagerank score is captured by the pages on thé Fagtls of the Web sites? To
answer this, we crawled a large portion of the Chilean Web (.cl) obtainingdrd million pages in April of
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Figure 5.16: Fraction of different Web pages seen at a given depth, antidreof entry pages
at the same depth, considering the directory structurbgstudied Web sites. Frequencies are
normalized relative to all pages.

2004, using 150 thousand seed pages that found 53 thousand Well-gjte®e 5.17 shows the cumulative
Pagerank score for this sample. Again, the first five levels capture mame80fo of the best pages. Note
that the levels here are obtained in terms of the global Web structure, edngithternal and external links,
not user sessions. These results are consistent with the findings bk WagbWiener [NWO1].
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Figure 5.17: Cumulative Pagerank by page levels in a large sample of tiiea®@hweb.

These models and observations could be used by a search engineewrdrhalso account for dif-
ferences in Web sites. For instance, if the search engine’s crawfermsra breadth-first crawling and can
measure the ratio of new URLs from a Web site it is adding to its queue vslg&les) then it should be able
to infer how deep to crawl that specific Web site. The work we presentidsiarticle provides a framework
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for that kind of adaptivity.

An interesting enhancement of the models shown here is to consider thatoointiee pages to detect
duplicates and near-duplicates. In our model, downloading a duplicatesbeglld be equivalent to going
back to the level at that we visited that page for the first time. A more detaikdgisas could also consider
the distribution of terms in Web pages and anchor text as the user browsegtta Web site.

A different class of models for user browsing, including models basextonomical decisions could be
used, but those models should be able to fit both, the distribution of sessgih knd the expected session
depth.

As the amount of on-line content that people, organizations and busiresslling to publish grows,
more Web sites will be built using Web pages that are dynamically generatébpse pages cannot be
ignored by search engines. Our aim is to generate guidelines to crawlrbes practically infinite, Web
sites.
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Figure 5.18: Fit of the models to actual data, except for Blogs and noreguwental organi-
zations with Blogs. Model B (back to start level), has smadiegors for most Web sites. The
asymptotic standard error for the fit of this model is 5% inwlogst case, and consistently less
than 3% for all the other cases. Note that we have zoomedarthiettop portion of the graph
(continues on the next page).
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Figure 5.19: Fit of the models to actual data in the case of Blogs. In thég eeser sessions tend
to go deeper inside the Website because more pages arel ysitsession, probably because
Blog postings tend to be short.
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