
Chapter 3

A New Crawling Model and Architecture

Web crawlers have to deal with several challenges at the same time, and someof them contradict each other.

They must keep fresh copies of Web pages, so they have to re-visit pages, but at the same time they must

discover new pages, which are found in the modified pages. They must use the available resources such as

network bandwidth to the maximum extent, but without overloading Web servers as they visit them. They

must get many “good pages”, but they cannot exactly know in advance which pages are the good ones.

In this chapter, we present a model that tightly integrates crawling with the rest of a search engine and

gives a possible answer to the problem of how to deal with these contradictory goals, by means of adjustable

parameters. We show how this model generalizes several particular cases, and leads to a new crawling

software architecture.

The rest of this chapter is organized as follows: Section 3.1 presents the problem of crawler scheduling,

and Section 3.2 discusses the problems of a typical crawling model. Section 3.3shows how to separate short-

term and long-term scheduling, and Section 3.4 shows how to combine page freshness and quality to obtain

an efficient crawling order. Section 3.5 introduces a general crawler architecture that is consistent with these

observations.

Note: portions of this chapter have been presented in [CBY02, BYC02].

3.1 The problem of crawler scheduling

We consider a Web crawler that has to download a set of pages, with eachpagep having sizeSp measured in

bytes, using a network connection of capacityB, measured in bytes per second. The objective of the crawler

is to download all the pages in the minimum time. A trivial solution to this problem is to download all the

Web pages simultaneously, and for each page use a fraction of the bandwidth proportional to the size of each

page. IfBp is the downloading speed for pagep, then:
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(a) Full parallelization (b) Full serialization

Figure 3.1: Two unrealistic scenarios for Web crawling: (a) parallelizing all page downloads

and (b) serializing all page downloads. The areas representpage sizes, as size = speed × time.

Bp =
Sp

T ∗
(3.1)

WhereT ∗ is the optimal time to use all of the available bandwidth:

T ∗ =
∑p Sp

B
(3.2)

This scenario is depicted in Figure 3.1a.

However, there are many restrictions that forbid this optimistic scenario. Onerestriction is that a

scheduling policy must avoid overloading Web sites, enforcing a politenesspolicy as described in Section

??: a Web crawler should not download more than one page from a single Website at a time, and it should

wait several seconds between requests.

Instead of downloading all pages in parallel, we could also serialize all the requests, downloading only

one page at a time at the maximum speed, as depicted in Figure 3.1b. However,the bandwidth available for

Web sitesBMAX
i is usually lower than the crawler bandwidthB, so this scenario is not realistic either.

The presented observations suggest that actual download time lines are similar to the one shown in

Figure 3.2. In the Figure, the optimal timeT ∗ is not achieved, because some bandwidth is wasted due to

limitations in the speed of Web sites (in the figure,BMAX
3 , the maximum speed for page 3 is shown), and to

the fact that the crawler must wait between accesses to a Web site (in the figure, pages 1−2 and 4−5 belong

to the same site, and the crawler waitsw seconds between them).
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Figure 3.2: A more realistic download time line for Web crawlers. The hatched portion is

wasted bandwidth due to the constraints in the scheduling policy. The optimal timeT ∗ is not

achieved.

To overcome the problems shown in Figure 3.2, it is clear that we should try to saturate the network

link, downloading pages from many different Web sites at the same time. Unfortunately, most of the pages

are located in a small number of sites: the distribution of pages to sites, shown inFigure 3.3, is very bad in

terms of crawler scalability. Thus, it is not possible to use productively a large number of robots and it is

difficult to achieve a high utilization of the available bandwidth.

There is another serious practical constraint: the HTTP request has latency, and the latency time can be

over 25% of the total time of the request [?]. This latency is mainly the time it takes to establish the TCP

connection and it can be partially overcome if the same connection is used to issue several requests using the

HTTP/1.1 “keep-alive” feature.

3.2 Problems of the typical crawling model

Crawling literature emphasizes on the words “crawler” and “spider”, and those words suggests walking

through a directed graph. That is very far from what is really happening, because crawling is just automatic

page downloading that does not need to follow a browsing-like pattern: in some cases a breadth-first approach

is used, in other cases the crawling is done in a way that has not an obviousrepresentation on the Web graph,

and does not resembles a graph traversal.

The typical crawling algorithm comes from the early days of the World Wide Web, and it is given by

Algorithm 1.

We consider that this algorithm can be improved, because during crawling itis not necessary to add the
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Figure 3.3: Distribution of site sizes in a sample of the Chilean Web. There are a few Web

sites that are very large, and a large fraction of small Web sites. This poses a problem to Web

crawlers, as they must download several pages from a small number of Web sites but at the

same time they must avoid overloading them with requests.

newly found URLs toQ each and every time a Web page is parsed. The new URLs can be added in groups

or “batches”, because:

Indexing is done in batches.The crawling process adds information to acollection that will be indexed.

The indexing process is done in batch, many megabytes of text at a time, and with current algorithms

it is very inefficient to do it one document at a time, unless one can achieve an exact balance between

the incoming stream of documents and the processing speed of the index [TLNJ01], and in this case,

the index construction becomes the bottleneck. Thus, in most search engines, the index is not updated

continuously but completely at the same time. To the best of our knowledge, thisis the case for

most large search engines, and there is even a term coined for the updateof Google’s index (“Google

dance”), when the new index is distributed to the different data centers [?]. When the index is updated

in batches, it is not important which URLs were transferred first.

Distributed crawlers exchange URLs in batches.If the crawler is distributed, then it has to send the re-

sults back to a central server, or it has to exchange results with other crawling processes. For better

performance, it must send many URLs at a time, as the exchange of URLs generates an overhead that

is mostly given by the context switches, not for the (relatively small) size of the URLs [CGM02]. This

means that how the URLs are orderedlocally should not impact theglobal crawling order.

The important URLs are seen earlier in the crawl. If some URL ordering is done and if this ordering is

not based on text-similarity to a query, then in steady state a page that we havejust seen is a very

unlikely candidate to be downloaded in the near future: “good” pages areseen early in the crawling

process [NW01]. Conversely, if a URL is seen for the first time in a late stage of the crawling process,

there is a high probability that it is not a very interesting page. This is obviously true if Pagerank
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Algorithm 1 Typical crawling algorithm
Require: p1, p2, ..., pn starting URLs

1: Q = {p1, p2, ..., pn}, queue of URLs to visit.

2: V = /0, visited URLs.

3: while Q 6= /0 do

4: Dequeuep ∈ Q, selectp according to some criteria.

5: Do an asynchronous network fetch forp.

6: V = V ∪{p}

7: Parsep to extract text and extract outgoing links

8: Γ+(p) ← pages pointed byp

9: for eachp′ ∈ Γ+(p) do

10: if p′ /∈V ∧ p′ /∈ Q then

11: Q = Q∪{p′}

12: end if

13: end for

14: end while

[PBMW98] is used, because it reflects the time a random surfer “spends” at the page and if a random

surfer spends more time in a page, then probably the page can be reachedfrom several links.

We have noticed that previous work tends to separate two similar problems andto mix two different

problems:

• The two different problems that are usually mixed are the problem of short-term efficiency (maximiz-

ing the bandwidth usage and being polite with servers) and long-term efficiency (ordering the crawling

process to download important pages first). We discuss why these two problems can be separated in

Section 3.3.

• The two related problems that are usually treated as separate issues are theindex freshness and the

index intrinsic quality. We consider that it is better to think in terms of a series of scores related

to different characteristics of the documents in the collection,including freshness, which should be

weighted accordingly to some priorities that vary depending on the usage context of the crawler. This

idea is further developed in Section 3.4.

3.3 Separating short-term from long-term scheduling

We intend to deal with long-term scheduling and short-term scheduling separatelly. To be able to do this,

we must prove that both problems can be separated, namely, we must checkif the intrinsic quality of a Web
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page or a Web server is related to the bandwidth available to download that page. If that were the case, then

we would not be able to select the most important pages first and later re-order pages to use the bandwidth

effectively, because while choosing the important pages we would be affecting the network transfer speed.

We designed and ran the following experiment to validate this hypothesis. We took one thousand

Chilean site names at random from the approximately 50,000 currently existing. We accessed the home page

of these Web sites repeatedly each 6 hours during a 2-weeks period, and measured the connection speed

(bytes/second) and latency (seconds). To get a measure of the network transfer characteristics and avoid

interferences arising from variations in the connections to different servers, pages were accessed sequentially

(not in parallel).

From the 1000 home pages, we were able to successfully measure 750 of them, as the others were down

during a substantial fraction of the observed period, or did not answerour request with an actual Web page.

In the analysis, we consider only Web sites that answered to the requests.

As a measure of the “importance” of Web sites, we used the number of in-linksfrom different Web sites

in the Chilean Web, as this is a quantitative measure of the popularity of the Web site among other Web site

owners.

We measured the correlation coefficientr between the number of in-links and the speed (r = −0.001),

and between the number of in-links and the latency (r = −0.069). The correlation between these parameters

is not statistically significant. These results show that the differences in the network connections to “impor-

tant” pages and “normal” pages are not relevant to long-term scheduling. Figure 3.4 shows a scatter plot of

connection speed and number of in-links.
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Figure 3.4: Scatter plot of connection speed (in Kilobytes per second) and latency (in seconds)

versus popularity (measured as the number of in-links). In our experiments, we found no sig-

nificant correlation between these variables. The results are averages of the measures obtained

by connecting to 750 Web sites sequentially every 6 hours during a 2-weeks period.

For completeness, we also used the data gathered during this experiment to measure the correlation
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Figure 3.5: Scatter plot of connection speed versus latency. Web sites with low connection

speeds tend to have also low latency.

between the connection speed and latency (r =−0.645), which is high, as shown in Figure 3.5. In the graph,

we can see that Web sites with higher bandwidths tend to have low latency times.

Another interesting result that we obtained from this experiment was that connection speeds and latency

times varied substantially during the observed period. We found on average a relative deviation of 42% for

speed and 96% for latency, so these two quantities cannot be predicted based only on their observed mean

values. The daily and weekly periodicity in Web server response time observed by Liu [Liu98] has to be

considered for a more accurate prediction: Diligentiet al. [?] maintain several observed values for predicting

connection speed, and group the observations by time of the day to account for the periodicity in Web server

response time.

3.4 Combining page freshness and quality

A search engine’s crawler is designed to create a collection of pages thatis useful for the search engine’s

index. To be useful, the index should balance comprehensiveness andquality. These two goals compete,

because at each scheduling step, the crawler must decide between downloading a new page, not currently

indexed, or refreshing a page that is probably outdated in the index. There is a trade-off between quantity

(more objects) and quality (more up-to-date objects).

In the following, we propose a function to measure the quality of the index of asearch engine. The

crawler’s goal is to maximize this function.

We start by stating three factors that are relevant for the quality of a Web page in the index:

Intrinsic quality of the page. The index should contain a large number of Web pages that areinteresting

to the search engine’s users. However, the definition of what will be interesting for users is a slippery

one, and currently a subject of intense research. A number of strategies have been proposed [CGMP98,
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DCL+00, NW01], usually relying in a ranking function for ordering the list of objects found by the

search engine.

We cannot known in advance the interest that a Web page will have to users, but we can approximate it

[CGMP98] using a ranking function that considers the partial information that the crawler has obtained

so far during its process.

The intrinsic quality of a page can be estimated in many ways [CGMP98]:

• Link analysis (link popularity).

• Similarity to a given query.

• Accesses to the page on the index (usage popularity).

• Location-based, by the perceived depth (e.g. number of directories onthe path to the Web object).

• Domain name, IP address or segment, geography, etc.

Representational quality of the page in the index.Every object in the index shouldaccurately represent

a real object in the Web. This is related to both the amount of data stored about the object (e.g.: it is

not the same to index just the first 200 words than to index the full page) andto the rendering time of

the object (e.g.: compression [WMB99] uses less space but may increasethe rendering time).

The representational quality depends mainly on the quantity and format of theinformation being stored

for every object. In the case of Web pages, we can order the representational quality from less to more:

• URL.

• URL + Index of text near links to that page.

• URL + Index of text near links to that page + Index of the full text

• URL + Index of text near links to that page + Index of the full text + Summaryof text (“snippet”)

extracted using natural language processing techniques or simply by taking a few words from the

beginning of the text

• URL + Index of text near links to that page + Index of the full text + Full text.

There are other possibilities, involving indexing just portions of the page using the HTML markup as

a guide, i.e., indexing only titles, metadata and/or page headings.

Rendering time depends on the format, particularly if compression is used. Some adaptivity can be

used, e.g.: text or images could be compressed except for those objects inwhich a large representa-

tional quality is required, because they are accessed frequently by the search engine.

At this moment, Google [goo04] uses only two values, either RepresentationalQuality(pi) = high and

the Web page is stored almost completely, or RepresentationalQuality(pi) = low and only the URL
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and the hyperlink anchor texts to that URL are analyzed. Note that in this case a page can be in the

index without ever having been actually downloaded: the index for these pages is built using the URL

and a few words that appeared in the context of links found towards thatpage. In the future, the page

can be visited and its representational quality can increase, at the expense of more storage space and

more network transfers.

There is no reason why this should be a binary variable. A selective index, which indexes partially

certain pages and completely other pages can be a good solution for savingdisk space in the future,

especially if the distance between storage capacity and the amount of information available on the Web

further increases.

Freshness of the page.Web content is very dynamic, and the rate of change of Web pages [DFKM97,

BCS+00] is believed to be between a few months to one year, with the most popular objects having

a higher rate of change than the others. We expect to maximize the probability of a page being fresh

in the index, given the information we have about past changes: an estimator for this was shown in

Section?? (page??).

Keeping a high freshness typically involves using more network resources to transfer the object to the

search engine.

For thevalue of an object in the index,V (p), a product function is proposed:

V (p) = IntrinsicQuality(p)α ×RepresentationalQuality(p)β ×Freshness(p)γ (3.3)

The parametersα, β and γ are adjustable by the crawler’s owner, and depend on the objective and

policies of it. Other functions could be used, as long as they are increasingin the relevant quality measures,

and allow to specify the relative importance between these values. We propose to use a product because the

distribution of quality and rate of change are very skewed and we usually will be working with the logarithm

of the ranking function for the intrinsic quality.

We propose that thevalue of an indexI = {p1, p2, ..., pn} is the sum of the values of the objectspi stored

on the index:

V (I) =
n

∑
i=1

V (pi) (3.4)

Depending on the application, other functions could be used to aggregate the value of individual ele-

ments into the value of the complete index, as long as they are non-decreasingon every component. For

instance, a function such asV (I) = miniV (pi) could be advisable if the crawler is concerned with ensuring

a baseline quality for all the objects in the index.
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A good coverage, i.e., indexing a large fraction of the available objects, certainly increases the value of

an index, but only if the variables we have cited: intrinsic quality, representational quality and freshness are

considered. Coverage also depends on freshness, as new pages are usually found only on changed pages.

The proposed model covers many particular cases that differ on the relative importance of the measures

described above. In Figure 3.6, different types of crawlers are classified in a taxonomy based on the proposed

three factors.

Figure 3.6: Different types of Web crawlers can be classified in our framework, based on the

relative importance given to freshness, representationalquality and intrinsic quality.

Research crawlers (e.g.: CiteSeer [cit04]) and focused crawlers aremostly interested in the intrinsic

quality of the downloaded pages. Archive crawlers (e.g.: Internet Archive [arc04]) are mostly interested in

keeping an accurate copy of the existing pages. News agents and mirroring systems are mostly interested in

having fresh copies of the pages. General, large-scale crawlers arein the center of the graph, as they have to

balance all the different aspects to have a good index.

3.5 A software architecture

The observations presented in the previous sections can be used to design a new crawling architecture. The

objective of the design of this crawling architecture is to divide the crawling task into different tasks that will

be carried efficiently by specialized modules.

A separation of tasks can be achieved with two modules, as shown in Figure 3.7. Thescheduler calcu-

lates scores and assigns pages to severaldownloader modules that transfer pages through the network, parse

their contents, extract new links and maintain the link structure.
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Figure 3.7: A software architecture with two modules. A “batch” of pagesis generated by the

scheduler, and downloaded and parsed by thedownloader. Under this scheme, the scheduler

requires read access to the collection, and the downloader read and write access.

There are some problems with this two-module architecture. One problem is thatfor the scheduler

to work on the Web graph, during the calculations, the Web graph cannot change. So, the the process of

modifying the Web graph should be as fast as possible, but parsing the pages can be slow and this could

mean that we have to “lock” the Web graph during a long time. What can be done to overcome this is to

parse all pages and accumulate links, and then add all the links found to the collection.

Another issue is that we could have different, optimized hardware architectures for the tasks of down-

loading and storing pages and for the task of parsing pages. Parsing pages can be expensive in terms of

processing, while downloading pages requires mostly high network connectivity and fast disks. Moreover,

if the network downloads must be carried with high parallelism, then each downloading task should be very

lightweight. To solve these issues we divide the tasks of downloading, parsing and keeping the link structure,

as shown in Figure 3.8. The following module names are used through the thesis:

Manager: page value calculations and long-term scheduling.

Harvester: short-term scheduling and network transfers.

Gatherer: parsing and link extraction.

Seeder: URL resolving and link structure.

Figure 3.9 introduces the main data structures that form the index of the search engine, and outlines the

steps of the operation:

1. Efficient crawling order Long-term scheduling is done by the “manager” module, which generates the

list with URLs that should be downloaded by the harvester in the next cycle (a “batch”). The objective

of this module is to maximize the “profit” (i.e.: the increase in the index value) in eachcycle.
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Figure 3.8: The proposed software architecture has a manager, that generates batches of URLs

to be downloaded by the harvester. The pages then go to a gatherer that parses them and send

the discovered URLs to a seeder.

2. Efficient network transfers Short-term scheduling is assigned to the “harvester” module. This module

receives batches of URLs and its objective is to download the pages in the batch as fast as possi-

ble, using multiple connections and enforcing a politeness policy. The harvester generates a partial

collection, consisting mostly of raw HTML data.

3. Efficient page parsing The extraction of the text and links is assigned to the “gatherer” module. This

module receives the partial collections downloaded by the harvester(s) and adds the text to the main

collection. It also generates a list of found URLs that are passed to the seeder.

4. Efficient URL manipulation The URLs found are processed by a “seeder” module, which searches for

new URLs that have not been seen before. This module also checks forURLs that should not be

crawled because of therobots.txt exclusion protocol, described in Section??(page??). The module

maintains a data structure describing Web links.

The pattern of read and write accesses to the data structures is designed toimprove the scalability of the

crawler as, for instance, the pages can be downloaded and parsed while the Web graph is analyzed, and the

analysis only must stop while the seeder is running.

The programs and data structures in Figure 3.9 are explained in detail in Chapter??.
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Figure 3.9: The main data structures and the operation steps of the crawler: (1) the manager

generates a batch of URLs, (2) the harvester downloads the pages, (3) the gatherer parses the

pages to extract text and links, (4) the seeder checks for newURLs and maintains the link

structure.

3.6 Conclusions

Web crawling is not only a trivial graph traversal problem. It involves several issues that arise from the

distributed nature of the Web. First, Web crawlers must share resourceswith other agents, mostly with

humans, and cannot monopolize Web sites’ time –indeed, a Web crawler should try to minimize its impact on

Web sites. Second, Web crawlers have to deal with an information repository which contains many objects of

varying quality, including objects with very low quality created to lure the Web crawler and deceive ranking

schemes.

We consider the problem of Web crawling as a process of discovering relevant objects, and one of

the main problems is that a Web crawler always works with partial information, because it must infer the

properties of the unknown pages based on the portion of the Web actually downloaded. In this context, the

Web crawler requires access to as most information as possible about the Web pages.

While the model implies that all the portions of the search engine should know allthe properties of

the Web pages, the architecture introduced in this chapter is an attempt of separating these properties into

smaller units (text, link graph, etc.) for better scalability. This architecture is implemented in the WIRE

crawler and details on the implementation of the WIRE crawler is explained in Chapter ??.

Benchmarking this architecture requires a framework that allows comparisons in different settings of

network, processor, memory and disk, and during this thesis we did not carry any benchmark of this type.

However, the findings about scheduling strategies, stop criteria and Webcharacteristics presented in the
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following chapters are mostly independent of the chosen architecture.

The proposed model considers the processes of indexing and crawling the Web as a whole because it

the context of today’s Web, it is impossible to download all of the Web pages,furthermore, in Chapter??we

argue that the number of Web pages is infinite, so the fraction of the Web thata crawler downloads should

represent the most important pages. The next chapter studies algorithms for directing the crawler towards

important pages early in the crawl.
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