Chapter 3

A New Crawling Model and Architecture

Web crawlers have to deal with several challenges at the same time, andfibr® contradict each other.
They must keep fresh copies of Web pages, so they have to re-vigis plaigt at the same time they must
discover new pages, which are found in the modified pages. They nusteisavailable resources such as
network bandwidth to the maximum extent, but without overloading Web seasethey visit them. They
must get many “good pages”, but they cannot exactly know in advahahwwages are the good ones.

In this chapter, we present a model that tightly integrates crawling with thefrassearch engine and
gives a possible answer to the problem of how to deal with these contngdictals, by means of adjustable
parameters. We show how this model generalizes several particula;, caskleads to a new crawling
software architecture.

The rest of this chapter is organized as follows: Section 3.1 presentsoiblemm of crawler scheduling,
and Section 3.2 discusses the problems of a typical crawling model. SectigimoBv8 how to separate short-
term and long-term scheduling, and Section 3.4 shows how to combineneapadss and quality to obtain
an efficient crawling order. Section 3.5 introduces a general crawdbitacture that is consistent with these
observations.

Note: portions of this chapter have been presented in [CBY02, BYCO02].

3.1 The problem of crawler scheduling

We consider a Web crawler that has to download a set of pages, witipagep having sizeS, measured in
bytes, using a network connection of capa@fyneasured in bytes per second. The objective of the crawler
is to download all the pages in the minimum time. A trivial solution to this problem is tontiad all the
Web pages simultaneously, and for each page use a fraction of theid#mgvoportional to the size of each
page. IfBp is the downloading speed for pagethen:

B B

S;=T*xB,
i i

= T*

g Sp=T*x By g
E E Si= Sy= S3= S4= |S5=
é ;3 T*xB,| T*xBy | T*xB3 |T*XB4|T*XBs
g S3=T*x Bj g
he e}
'g S4=T*xBy 'g
5 5
[=2] [==]

Ss=T*x Bs

— —
Time [seconds] Time [seconds]
(a) Full parallelization (b) Full serialization

Figure 3.1: Two unrealistic scenarios for Web crawling: (a) paralielizall page downloads
and (b) serializing all page downloads. The areas repregsgg sizes, asze = speed x time.

By — T& (3.1)

WhereT* is the optimal time to use all of the available bandwidth:

._ 2pS
T _p? (3.2)

This scenario is depicted in Figure 3.1a.

However, there are many restrictions that forbid this optimistic scenario. r€stection is that a
scheduling policy must avoid overloading Web sites, enforcing a politqgai&y as described in Section
?7?. a Web crawler should not download more than one page from a singlesieedit a time, and it should
wait several seconds between requests.

Instead of downloading all pages in parallel, we could also serialize aletiigests, downloading only
one page at a time at the maximum speed, as depicted in Figure 3.1b. Halwewmandwidth available for
Web sitesBMAX is usually lower than the crawler bandwidshso this scenario is not realistic either.

The presented observations suggest that actual download time lineisndee ® the one shown in
Figure 3.2. In the Figure, the optimal tinTe' is not achieved, because some bandwidth is wasted due to
limitations in the speed of Web sites (in the figuB§”"X, the maximum speed for page 3 is shown), and to
the fact that the crawler must wait between accesses to a Web site (in tleg figges + 2 and 4- 5 belong
to the same site, and the crawler waitseconds between them).

1
B 1
=2
|
S] ‘
= |
g S
g — I
3 1
‘S_" BMAX
£ S; :]
=
: i
Z
2 L
3 |
S4 |- w/ 1 Ss
] —
T* T**

Time [seconds]

Figure 3.2: A more realistic download time line for Web crawlers. Thechaid portion is
wasted bandwidth due to the constraints in the schedulitigypd he optimal timeT* is not
achieved.

To overcome the problems shown in Figure 3.2, it is clear that we should tigtucase the network
link, downloading pages from many different Web sites at the same time.riunégely, most of the pages
are located in a small number of sites: the distribution of pages to sites, shéwguire 3.3, is very bad in
terms of crawler scalability. Thus, it is not possible to use productivelygelaumber of robots and it is
difficult to achieve a high utilization of the available bandwidth.

There is another serious practical constraint: the HTTP request hasyladémd the latency time can be
over 25% of the total time of the reque&|.[This latency is mainly the time it takes to establish the TCP
connection and it can be partially overcome if the same connection is usedeésmssgeral requests using the
HTTP/1.1 “keep-alive” feature.

3.2 Problems of the typical crawling model

Crawling literature emphasizes on the words “crawler” and “spider”, andettwords suggests walking
through a directed graph. That is very far from what is really hapggtiaecause crawling is just automatic
page downloading that does not need to follow a browsing-like patteronie €ases a breadth-first approach
is used, in other cases the crawling is done in a way that has not an obsprasentation on the Web graph,
and does not resembles a graph traversal.

The typical crawling algorithm comes from the early days of the World Widé,Vded it is given by
Algorithm 1.

We consider that this algorithm can be improved, because during crawignigdt necessary to add the

0.1

'kIX*1.72 in [50,500]

0.01}
[%]
e
g
s Y
§ o001t
5
g
[

0.0001}

le-05 : M N

1 10 100 1000 10000 100000

Number of documents

Figure 3.3: Distribution of site sizes in a sample of the Chilean Web. réhere a few Web
sites that are very large, and a large fraction of small Weds siThis poses a problem to Web
crawlers, as they must download several pages from a smabauof Web sites but at the
same time they must avoid overloading them with requests.

newly found URLSs taQ each and every time a Web page is parsed. The new URLs can be addedps g
or “batches”, because:

Indexing is done in batches.The crawling process adds information tealection that will be indexed.
The indexing process is done in batch, many megabytes of text at a time jtanmuvwent algorithms
it is very inefficient to do it one document at a time, unless one can achiegeagt balance between
the incoming stream of documents and the processing speed of the indg3(T], and in this case,
the index construction becomes the bottleneck. Thus, in most search&rigmadex is not updated
continuously but completely at the same time. To the best of our knowledgestthie case for
most large search engines, and there is even a term coined for the ap@ategle’s index (“Google
dance”), when the new index is distributed to the different data cerierd/hen the index is updated
in batches, it is not important which URLSs were transferred first.

Distributed crawlers exchange URLs in batches.If the crawler is distributed, then it has to send the re-
sults back to a central server, or it has to exchange results with othwingggrocesses. For better
performance, it must send many URLSs at a time, as the exchange of UResages an overhead that
is mostly given by the context switches, not for the (relatively small) sizeeotfRLs [CGMO02]. This
means that how the URLSs are ordetedally should not impact thglobal crawling order.

The important URLSs are seen earlier in the crawl. If some URL ordering is done and if this ordering is
not based on text-similarity to a query, then in steady state a page that wéubtgeen is a very
unlikely candidate to be downloaded in the near future: “good” pagesese early in the crawling
process [NWO01]. Conversely, if a URL is seen for the first time in a lateesththe crawling process,
there is a high probability that it is not a very interesting page. This is oblyiduse if Pagerank

4

Algorithm 1 Typical crawling algorithm
Require: p1, p2,..., pn Starting URLs

1: Q={p1,P2,..., P}, queue of URLSs to visit.

2: V =0, visited URLs.

3: while Q#0do

4. Dequeuep € Q, selectp according to some criteria.
Do an asynchronous network fetch far

vV =vu{p}

Parsep to extract text and extract outgoing links
*(p) < pages pointed by

for eachp’ e 't (p) do
10: if P ¢VApP ¢Qthen

11: Q=Qu{p’}
12: end if

13: end for

14: end while

[PBMW98] is used, because it reflects the time a random surfer “spantise page and if a random
surfer spends more time in a page, then probably the page can be r&achegveral links.

We have noticed that previous work tends to separate two similar problems anid two different
problems:

e The two different problems that are usually mixed are the problem of skwrtefficiency (maximiz-
ing the bandwidth usage and being polite with servers) and long-term effyc{erdering the crawling
process to download important pages first). We discuss why these thtem®can be separated in
Section 3.3.

e The two related problems that are usually treated as separate issues iadeihfFeshness and the
index intrinsic quality. We consider that it is better to think in terms of a seriecafes related
to different characteristics of the documents in the collectinduding freshness, which should be
weighted accordingly to some priorities that vary depending on the usagextof the crawler. This
idea is further developed in Section 3.4.

3.3 Separating short-term from long-term scheduling

We intend to deal with long-term scheduling and short-term schedulingagefia To be able to do this,
we must prove that both problems can be separated, namely, we musifdhedktrinsic quality of a Web

5

page or a Web server is related to the bandwidth available to download teatlp&hat were the case, then
we would not be able to select the most important pages first and latereegagdes to use the bandwidth
effectively, because while choosing the important pages we would betiaff the network transfer speed.

We designed and ran the following experiment to validate this hypothesis. &Weotwe thousand
Chilean site names at random from the approximately 50,000 currently exigfmgccessed the home page
of these Web sites repeatedly each 6 hours during a 2-weeks perdyeasured the connection speed
(bytes/second) and latency (seconds). To get a measure of the kétamsfer characteristics and avoid
interferences arising from variations in the connections to differemesgrpages were accessed sequentially
(not in parallel).

From the 1000 home pages, we were able to successfully measure 78Mhoaththe others were down
during a substantial fraction of the observed period, or did not ansuwretequest with an actual Web page.
In the analysis, we consider only Web sites that answered to the requests.

As a measure of the “importance” of Web sites, we used the number of inftorkdifferent Web sites
in the Chilean Web, as this is a quantitative measure of the popularity of the it¥/esong other Web site
owners.

We measured the correlation coefficiertietween the number of in-links and the speed (—0.001),
and between the number of in-links and the latemey (-0.069). The correlation between these parameters
is not statistically significant. These results show that the differences iretisrk connections to “impor-
tant” pages and “normal” pages are not relevant to long-term schediiggre 3.4 shows a scatter plot of
connection speed and number of in-links.

1000 . : . . . 1000
L] L]
L] L]
g . . g c.a "
£ 100 ¢ e £ 100 °®
< . . \x. :. . z . 00 ..'. o
- o °° o0 - o o o .
o e ® o °% o @ ° o 2 ‘we,
s Pty D
5 10 + oo ‘Oﬁ,‘ Coe 4 5 10 + A o4 "".
1) ®od ° Be V70
z L] L X1 . > ..J ° z * ‘“S:L.r..ﬁ. L[]
0 00000ED 00 OO DGO GO 60 & O O
LN] ® OB ¢ L] CHNOGINO ®NeND o 00 o
00 NS L] L] o 1] wmes o o
L] o® o o [] o0 0E» o
1 1 P Py 1 1 1
0.1 1 10 100 1000 10000 100000 0.001 0.01 0.1 1 10 100
Connection speed [KB/s] Latency [s]

Figure 3.4: Scatter plot of connection speed (in Kilobytes per second)atency (in seconds)
versus popularity (measured as the number of in-links).uinexperiments, we found no sig-
nificant correlation between these variables. The restdtaeerages of the measures obtained
by connecting to 750 Web sites sequentially every 6 hoursduar 2-weeks period.

For completeness, we also used the data gathered during this experimerasiarenthe correlation

100000

10000 -

1000+ e

100 ¢

10 +

Connection speed [KB/s]

1+

Ol 1 1 1 1
0.001 0.01 0.1 1 10 100
Latency [s]

Figure 3.5: Scatter plot of connection speed versus latency. Web sislow connection
speeds tend to have also low latency.

between the connection speed and lateney {0.645), which is high, as shown in Figure 3.5. In the graph,
we can see that Web sites with higher bandwidths tend to have low latency times.

Another interesting result that we obtained from this experiment was thaection speeds and latency
times varied substantially during the observed period. We found on aearegative deviation of 42% for
speed and 96% for latency, so these two quantities cannot be predistd draly on their observed mean
values. The daily and weekly periodicity in Web server response timeauséry Liu [Liu98] has to be
considered for a more accurate prediction: Diligehsl. [?] maintain several observed values for predicting
connection speed, and group the observations by time of the day to aéootire periodicity in Web server
response time.

3.4 Combining page freshness and quality

A search engine’s crawler is designed to create a collection of pageis thsaful for the search engine’s
index. To be useful, the index should balance comprehensivenesguahty. These two goals compete,
because at each scheduling step, the crawler must decide betwedoatting a new page, not currently
indexed, or refreshing a page that is probably outdated in the indexe Tha trade-off between quantity
(more objects) and quality (more up-to-date objects).

In the following, we propose a function to measure the quality of the indexsefaach engine. The
crawler’s goal is to maximize this function.

We start by stating three factors that are relevant for the quality of a \Aigb in the index:

Intrinsic quality of the page. The index should contain a large number of Web pages thantaresting
to the search engine’s users. However, the definition of what will bedsiieg for users is a slippery
one, and currently a subject of intense research. A number of stmtegie been proposed [CGMP98,

DCL"00, NWO01], usually relying in a ranking function for ordering the list ofestts found by the
search engine.

We cannot known in advance the interest that a Web page will have t®, bs¢éwe can approximate it
[CGMP98] using a ranking function that considers the partial informatiatthie crawler has obtained
so far during its process.

The intrinsic quality of a page can be estimated in many ways [CGMP98]:

Link analysis (link popularity).

Similarity to a given query.

Accesses to the page on the index (usage popularity).

Location-based, by the perceived depth (e.g. number of directoribe gath to the Web object).

Domain name, IP address or segment, geography, etc.

Representational quality of the page in the index.Every object in the index shoulatcurately represent
a real object in the Web. This is related to both the amount of data storetitababject (e.g.: it is
not the same to index just the first 200 words than to index the full pagepahé rendering time of
the object (e.g.: compression [WMB99] uses less space but may indheasndering time).

The representational quality depends mainly on the quantity and formatiofdeation being stored
for every object. In the case of Web pages, we can order the repatisaal quality from less to more:

e URL.
e URL + Index of text near links to that page.
e URL + Index of text near links to that page + Index of the full text

e URL + Index of text near links to that page + Index of the full text + Sumnuditgxt (“snippet”)
extracted using natural language processing techniques or simply by taféw words from the
beginning of the text

e URL + Index of text near links to that page + Index of the full text + Fulktex

There are other possibilities, involving indexing just portions of the pageyuke HTML markup as
a guide, i.e., indexing only titles, metadata and/or page headings.

Rendering time depends on the format, particularly if compression is usede 8daptivity can be
used, e.g.: text or images could be compressed except for those objedtElna large representa-
tional quality is required, because they are accessed frequently bgatehsengine.

At this moment, Google [goo04] uses only two values, either Represent@isaldy(p;) = high and
the Web page is stored almost completely, or Representational@pglity low and only the URL

and the hyperlink anchor texts to that URL are analyzed. Note that in thesacpage can be in the
index without ever having been actually downloaded: the index for thegesas built using the URL
and a few words that appeared in the context of links found towardp#ugt. In the future, the page
can be visited and its representational quality can increase, at the exgfemsre storage space and
more network transfers.

There is no reason why this should be a binary variable. A selective ind@gh indexes partially
certain pages and completely other pages can be a good solution for deskrgpace in the future,
especially if the distance between storage capacity and the amount of itiforraeailable on the Web
further increases.

Freshness of the pageWeb content is very dynamic, and the rate of change of Web pages [BFKM
BCS"00] is believed to be between a few months to one year, with the most popigetobaving
a higher rate of change than the others. We expect to maximize the probabdifyage being fresh
in the index, given the information we have about past changes: an estiimatbis was shown in
Section?? (page??).
Keeping a high freshness typically involves using more network resstwdeansfer the object to the
search engine.

For thevalue of an object in the indeX/ (p), a product function is proposed:

V(p) = IntrinsicQuality p)® x RepresentationalQualitp)® x Freshnegs)Y (3.3)

The parameters, 3 andy are adjustable by the crawler’s owner, and depend on the objective and
policies of it. Other functions could be used, as long as they are increiading relevant quality measures,
and allow to specify the relative importance between these values. Wesgrtpase a product because the
distribution of quality and rate of change are very skewed and we usuglllyerworking with the logarithm
of the ranking function for the intrinsic quality.

We propose that thealue of an indext = {p1, pz, ..., pn} IS the sum of the values of the objegisstored
on the index:

V)= 3 V() (3.4)

Depending on the application, other functions could be used to aggregataltte of individual ele-
ments into the value of the complete index, as long as they are non-decreasévgry component. For
instance, a function such &41) = min;V(p;) could be advisable if the crawler is concerned with ensuring
a baseline quality for all the objects in the index.

A good coverage, i.e., indexing a large fraction of the available objeatsjitly increases the value of
an index, but only if the variables we have cited: intrinsic quality, repitasienal quality and freshness are
considered. Coverage also depends on freshness, as new pagssally found only on changed pages.

The proposed model covers many particular cases that differ on thigeétaportance of the measures
described above. In Figure 3.6, different types of crawlers arsifiegin a taxonomy based on the proposed
three factors.

Intrinsic
quality
A
Research Focused
crawlers crawlers
General
crawlers
Archive ~ News
crawlers e N agents
P Mirroring .
» systems A
Representational quality Freshness

Figure 3.6: Different types of Web crawlers can be classified in our fraorg, based on the
relative importance given to freshness, representatimumaity and intrinsic quality.

Research crawlers (e.g.: CiteSeer [cit04]) and focused crawlemm@sty interested in the intrinsic
quality of the downloaded pages. Archive crawlers (e.g.: Internehidedarc04]) are mostly interested in
keeping an accurate copy of the existing pages. News agents and ngisgstems are mostly interested in
having fresh copies of the pages. General, large-scale crawldarstagecenter of the graph, as they have to
balance all the different aspects to have a good index.

3.5 A software architecture

The observations presented in the previous sections can be used waesyy crawling architecture. The
objective of the design of this crawling architecture is to divide the crawlisigitzto different tasks that will
be carried efficiently by specialized modules.

A separation of tasks can be achieved with two modules, as shown in Figurérscheduler calcu-
lates scores and assigns pages to sederatloader modules that transfer pages through the network, parse
their contents, extract new links and maintain the link structure.

10

Downloader

Scheduler Short-term scheduling
Page score calculations > Network transfers
Long-term scheduling Parsing + Link extraction

Link resolving

—

Figure 3.7: A software architecture with two modules. A “batch” of pagegenerated by the
scheduler, and downloaded and parsed by tt®vnloader. Under this scheme, the scheduler
requires read access to the collection, and the downloaddrand write access.

There are some problems with this two-module architecture. One problem ifothithae scheduler
to work on the Web graph, during the calculations, the Web graph canaageh So, the the process of
modifying the Web graph should be as fast as possible, but parsing glies pan be slow and this could
mean that we have to “lock” the Web graph during a long time. What can be toovercome this is to
parse all pages and accumulate links, and then add all the links found tolligxtion.

Another issue is that we could have different, optimized hardware artimiéscfor the tasks of down-
loading and storing pages and for the task of parsing pages. Pargieg pan be expensive in terms of
processing, while downloading pages requires mostly high network ctivibeand fast disks. Moreover,
if the network downloads must be carried with high parallelism, then eachldading task should be very
lightweight. To solve these issues we divide the tasks of downloadingnpgansd keeping the link structure,
as shown in Figure 3.8. The following module names are used through tlies thes

Manager: page value calculations and long-term scheduling.
Harvester: short-term scheduling and network transfers.
Gatherer: parsing and link extraction.

Seeder: URL resolving and link structure.

Figure 3.9 introduces the main data structures that form the index of thehssagine, and outlines the
steps of the operation:

1. Efficient crawling order Long-term scheduling is done by the “manager” module, which generates th

list with URLSs that should be downloaded by the harvester in the next cg¢leafch”). The objective
of this module is to maximize the “profit” (i.e.: the increase in the index value) in egdb.

11

Manager
Page score calculations
Long-term scheduling

Seeder Harvester
Link resolving <> Short-term scheduling
Robots exclusions Network transfers
Gatherer
Parsing
Link extraction

Figure 3.8: The proposed software architecture has a manager, thatagesbatches of URLs
to be downloaded by the harvester. The pages then go to argathat parses them and send
the discovered URLSs to a seeder.

2. Efficient network transfers Short-term scheduling is assigned to the “harvester” module. This module
receives batches of URLs and its objective is to download the pages iratble &is fast as possi-
ble, using multiple connections and enforcing a politeness policy. The starvgenerates a partial
collection, consisting mostly of raw HTML data.

3. Efficient page parsing The extraction of the text and links is assigned to the “gatherer” module. This
module receives the partial collections downloaded by the harvestaqgdals the text to the main
collection. It also generates a list of found URLS that are passed to¢derse

4, Efficient URL manipulation The URLs found are processed by a “seeder” module, which seafohe
new URLs that have not been seen before. This module also checkiRios that should not be
crawled because of th@bot s. t xt exclusion protocol, described in Secti®p(page??). The module
maintains a data structure describing Web links.

The pattern of read and write accesses to the data structures is designpobiee the scalability of the
crawler as, for instance, the pages can be downloaded and parsedhehNeb graph is analyzed, and the
analysis only must stop while the seeder is running.

The programs and data structures in Figure 3.9 are explained in detail jiteCh2

12

Manager

Harvester

Web pages

Figure 3.9: The main data structures and the operation steps of theamra(d)) the manager
generates a batch of URLSs, (2) the harvester downloads thespé3) the gatherer parses the
pages to extract text and links, (4) the seeder checks forUiglws and maintains the link
structure.

3.6 Conclusions

Web crawling is not only a trivial graph traversal problem. It involvegesal issues that arise from the
distributed nature of the Web. First, Web crawlers must share resowitte®ther agents, mostly with
humans, and cannot monopolize Web sites’ time —indeed, a Web crawléd sfyado minimize its impact on
Web sites. Second, Web crawlers have to deal with an information repositich contains many objects of
varying quality, including objects with very low quality created to lure the Welwtzr and deceive ranking
schemes.

We consider the problem of Web crawling as a process of discoveriagarg objects, and one of
the main problems is that a Web crawler always works with partial informatiecadse it must infer the
properties of the unknown pages based on the portion of the Web actoalhija@hded. In this context, the
Web crawler requires access to as most information as possible aboutkheades.

While the model implies that all the portions of the search engine should knadveapiroperties of
the Web pages, the architecture introduced in this chapter is an attempiaohtsegp these properties into
smaller units (text, link graph, etc.) for better scalability. This architecture is imgi¢ed in the WIRE
crawler and details on the implementation of the WIRE crawler is explained int&tip

Benchmarking this architecture requires a framework that allows compariadifferent settings of
network, processor, memory and disk, and during this thesis we did ngtaray benchmark of this type.
However, the findings about scheduling strategies, stop criteria andcWaglacteristics presented in the

13

following chapters are mostly independent of the chosen architecture.

The proposed model considers the processes of indexing and crawdineth as a whole because it
the context of today’s Web, it is impossible to download all of the Web pdgakermore, in Chapte?? we
argue that the number of Web pages is infinite, so the fraction of the Weh tiratvler downloads should
represent the most important pages. The next chapter studies algorithdisetting the crawler towards
important pages early in the crawl.

14

Bibliography

[arc04] Internet archive project. http://www.archive.org/, 2004.

[BCST00] Brian Brewington, George Cybenko, Raymie Stata, Krishna Bhardtf-arzin Maghoul. How
dynamic is the web? IRroceedings of the Ninth Conference on World Wide Web, pages 257 —
276, Amsterdam, Netherlands, May 2000.

[BYCO02] Ricardo Baeza-Yates and Carlos Castillo. Balancing volumelitguand freshness in web
crawling. InSoft Computing Systems - Design, Management and Applications, pages 565-572.
IOS Press, 2002.

[CBY02] Carlos Castillo and Ricardo Baeza-Yates. A new crawling modelPobkter proceedings of
the eleventh conference on World Wide Web, Honolulu, Hawaii, USA, May 2002. (Extended
Poster).

[CGMO02] Junghoo Cho and Hector Garcia-Molina. Parallel crawlers Prbceedings of the eleventh
international conference on World Wide Web, pages 124-135, Honolulu, Hawaii, USA, May
2002. ACM Press.

[CGMP98] Junghoo Cho, Hector GaéaeMolina, and Lawrence Page. Efficient crawling through URL
ordering. InProceedings of the seventh conference on World Wide Web, Brisbane, Australia,
April 1998.

[cit04] Cite seer. http://citeseer.nj.nec.com/, 2004.

[DCL*00] Michelangelo Diligenti, Frans Coetzee, Steve Lawrence, C. Lee GilesMarco Gori. Fo-
cused crawling using context graphs.RAroceedings of 26th International Conference on Very
Large Databases (VLDB), pages 527-534, Cairo, Egypt, September 2000.

[DFKM97] Fred Douglis, Anja Feldmann, Balachander Krishnamurthyl 3effrey C. Mogul. Rate of
change and other metrics: a live study of the world wide weltJ3&8NIX Symposium on Inter-
net Technologies and Systems, pages 147-158, Monterey, California, USA, December 1997.

[goo04] Google search engine. http://www.google.com/, 2004.

15

[Liu9s]

[NWO1]

[PBMWOS]

[TLNJO1]

[WMB99]

Binzhang Liu. Characterizing web response time. Master’s th¥siginia State University,
Blacksburg, Virginia, USA, April 1998.

Marc Najork and Janet L. Wiener. Breadth-first crawling yseldgh-quality pages. IRro-
ceedings of the Tenth Conference on World Wide Web, pages 114-118, Hong Kong, May 2001.
Elsevier.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terizogfad. The pagerank citation
algorithm: bringing order to the web. FProceedings of the seventh conference on World Wide
Web, Brisbane, Australia, April 1998.

Jerome Talim, Zhen Liu, Philippe Nain, and Edward G. CoffmarCamtrolling the robots of
web search engines. Proceedings of ACM Joint International Conference on Measurement
and Modeling of Computer Systems (S GMETRICS/Performance), pages 236—244, Cambridge,
Massachusetts, USA, June 2001.

lan H. Witten, Alistair Moffat, and Timothy C. BellManaging Gigabytes. Morgan Kaufmann,
1999.

16

