Chapter 2

Related Work

In this chapter we review selected publications related to the topics coveitad thesis.

We start in section 2.1 with a summary of several studies about Web chriaratite that include results
relevant for Web crawling. We continue in section 2.2 with an outline on hasckeengines index pages
from the Web. Section 2.3 provides an overview of publications on link arsig general, in section 2.4
we review specific issues of Web crawling and their solutions, and in sezttowe cover the architecture
of existing Web crawlers.

2.1 Web characterization

2.1.1 Methodsfor sampling

One of the main difficulties involved in any attempt of Web characterization istbavbtain a good sam-
ple. As there are very few important pages lost in a vast amount of uniamgages (according to any
metric: Pagerank, reference count, page size, etc.), just taking a URbdom is not enough. For many
applications, pages with little or no meaningful content should be excludétisimportant to estimate the
importance of each page [HHMNOO], even if we have only partial informmatio

We distinguish two main methods for sampling Web pages:

Vertical sampling involves gathering pages restricted by domain names. As the domain nanra 8yste
duces a hierarchical structure, vertical sampling can be done atdiffievels of the structure. When
vertical sampling is done at top-level it can select entire countries suctl asi t, . au, which are
expected to be cohesive in terms of language, topics, history, or it et general top-level domains
such as edu or. com which are less coherent, except for tlgov domain. When vertical sampling
is done at second level, it will choose a set of pages produced by mewibidre same organization

(e.g.stanford. edu).

Countries that have been the subject of Web characterization studieddiirazil [VdMG"00], Chile
[BYPO03], Portugal [GS03], Spain [BY03], Hungary [B€B3] and Austria [RAW 02].

Horizontal sampling involves a criteria of selection that is not based on domain names. In thisticase
are two approaches for gathering data: using a log of the transactiorespnaky of a large organiza-
tion or ISP, or using a Web crawler. There are advantages and digadea for each method: when
monitoring a proxy it is easy to find popular pages, but the revisit period isssiple to control, as it
depends on users; using a crawler the popularity of pages has to betedtimtthe revisit period can
be fine-tuned.

In horizontal sampling, a “random walk” can be used to obtain a set in whégjes are roughly
visited with probability proportional to their Pagerank values, and then obtammple taken from
this set with probability inversely proportional to Pagerank, so the sampigéected to be unbiased
[HHMN99, HHMNOOQ].

2.1.2 Web dynamics

There are two areas of Web dynamics: studying the Web growth and sgutigillocument updates [RM02];
we will focus on the study of document updates, i.e.: the change of the Welmiis of creations, updates
and deletions. For a model of the growth of the number of pages per Webesit¢he study by Huberman
and Adamic [HA99].

When studying document updates, the data is obtained by repeatedtaczémgie set of pages during
a period of time.

For each page and each visit, the following information is available:

e The access time-stamp of the page: yisit

e The last-modified time-stamp (given by most Web servers; about 80%-9# equests in practice):
modified,.

e The text of the page, which can be compared to an older copy to detacted)aspecially if modifigd
is not provided.

The following information can be estimated if the re-visiting period is short:

e The time at which the page first appeared: created

e The time at which the page was no longer reachable: delet&dehler [Koe04] noted that pages
that are unreachable may become reachable in the future, and manyeghilptsthis behavior, so he
prefers the term “comatose page” instead of “dead page”.

2

In all cases, the results are only an estimation of the actual values beébaysee obtained bgolling
for events (changes), not by the resounctfying events, so it is possible that between two accesses a Web
page changes more than once.

Estimating freshness and age

The probability that a copy gf is up-to-date at time, up(t) decreases with time if the page is not re-visited.

Brewington and Cybenko [BC®0] considered that if changes to a given page occur at independent
tervals, i.e., page change is a memory-less process, then this can be nasdelR_disson process. However,
it is worth noticing that most Web page changes exhibit certain periodicitgatls® most of the updates
occur during business hours in the relevant time zone for the studied sastpthe estimators that do not
account for this periodicity are more valid on the scales of weeks or morahotihsmaller scales.

When page changes are modeled as a Poisson prodessitg of time have passed since the last visit,
then:

up(t) = et (2.1)

The parametek, characterizes the rate of change of the ppged can be estimated based on previous
observations, especially if the Web server provides the last modificatienofidhe page whenever it is
visited. This estimation fok, was obtained by Cho and Garcia-Molina [CGMO03b]:

S D
Ap%(xp 1) — NyTog%/Ny) (2.2)

ST

Np number of visits tap.

S, time since the first visit t.

Xp number of times the server has informed that the page has changed.

T, total time with no modification, according to the server, summed over all the visits.

If the server does not give the last-modified time, we can still check for neatlifins by comparing the
downloaded copies at two different times, Xpnow will be the number of times a modification is detected.
The estimation for the parameter in this case is:

Ap~ _NP'OQ(; —Xo/No) (2.3)

The above equation requirg < Np, so if the page changes every time it is visited, we cannot estimate

its change frequency.

Characterization of Web page changes

There are different time-related metrics for a Web page, the most used are

e Age: visity, — modified,.
o Lifespan: deletegl— created.
e Number of changes during the lifespan: changes

e Average change interval: lifespgfchangeg.

Once an estimation of the above values has been obtained for Web pagesamible, useful metrics
for the entire sample are calculated, for instance:

¢ Distribution of change intervals.
e Average lifespan of pages.

e Median lifespan of pages, i.e.: time it takes for 50% of the pages to changs.isTalso called the
“half-life” of the Web —a term borrowed from physics.

Selected results about Web page changes are summarized in Table 2.1.

The methods for the study of these parameters vary widely. Some resesafobus on the lifespan
of pages, as they are concerned with the “availability” of Web content. i$has important subject from
the point of view of researchers, as it is being common to cite on-line publisatie sources, and they are
expected to be somewhat “permanent” (but they are not).

Other publications focus on the rate of change of pages, which is mootiglielated to Web crawling,
as knowing the rate of change can help to produce a good re-visiting orde

2.1.3 Link structure

About computer networks, Barabi [Bar01] noted: “While entirely of human design, the emerging network
appears to have more in common with a cell or an ecological system than witlss\8atch.”

The graph representing the connections between Web pages hasfasstdpology and a macroscopic
structure that are different from the properties of a random grapiveld crawler designer must be aware of
these special characteristics.

Table 2.1: Summary of selected results about Web page changes, otoleiadreasing sam-
ple size. In general, methods for Web characterizationiesueary widely and there are few
comparable results.

Reference Sample Observations
360 random pages, Half-life 2 years
[Koe04]
long-term study 33% of pages lasted for 6 years
[MBO3] 500 scholarly publica- Half-life ~ 4.5 years
tions
2,500 pages, Average lifespan50 days
Gsgs] oIS 9e TespambY Ay
university Website Median age 150 days
[Spi03] 4,200 scholarly publica- Half-life ~ 4 years
tions
720,000 pages, Average lifespar60 — 240 days
[Cho00] popular sites 40% of pages.itomchange every day
50% of pages in edu and. gov remain the same for 4
months
950,000 pages Average age between 10 days and 10 months
[DFKM97] _)
Highly-linked pages change more frequently
4 million pages, 8% of new pages every week
popular sites 62% of the new pages have novel content
[NCO04] .
25% of new links every week
80% of page changes are minor
150 million pages, 65% of pages don’t change in a 10-week period
[FMNWO3] 30% of pages have only minor changes
Large variations of availability across domains
[BCST00] 800 million pages Average lifespan140 days

Scale-free networks

Scale-free networks, as opposed to random networks, are chaadtby an uneven distribution of links.
These networks have been the subject of a series of studies byaBafBhr02], and are characterized as
networks in which the distribution of the number of linkép) to a pagep follows a power law:

Pr(r'(p) =k) Ok™® (2.4)

A scale-free network is characterized by a few highly-linked nodesatttats “hubs” connecting several
nodes to the network. The difference between a random network acalexfsee network is depicted in
Figure 2.1.

(a) Random network (b) Scale-free network

Figure2.1: Examples of a random network and a scale-free network. Baghdas 32 nodes
and 32 links. Note that both were chosen to be connected dadkmice on the plane, so they
are not entirely random.

Scale-free networks arise in a wide variety of contexts, and there isséasuiial amount of literature
about them, so we will cite in the following just a few selected publications.

Some examples of scale-free network arising outside the realm of comptesrks include:

e Acquaintances, friends and social popularity in human interactions. Thadiist commented “in
other words, some people have all the luck, while others have noneOgc

e Sexual partners in humans, which is highly relevant for the controbafadly-transmitted diseases.

e Power grid designs, as most of them are designed in such a way thahifk@yenodes fail, the entire
system goes down.

e Collaboration of movie actors in films.

e Citations in scientific publications.

e Proteins interaction.

e Cellular metabolism.
Examples of scale-free networks related to the Internet are:

e Geographic, physical connectivity of Internet nodes.
e Number of links on Web pages.
e User participation in interest groups and communities.

e E-mail exchanges.

These scale-free networks do not arise by chance alonéskmd Rnyi [ER60] studied a model of
growth for graphs in which, at each step, two nodes are chosen mhjfat random and a link is inserted
between them. The properties of these random graphs are not congigtethe properties observed in
scale-free networks, and therefore a model for this growth proceseded.

The connectivity distribution over the entire Web is very close to a power hagause there are a
few Web sites with huge numbers of links, which benefit from a good placemesearch engines and an
established presence on the Web. This has been called the “winner#'tpkeaomenon.

Baralasi and Albert [BA99] propose a “rich get richer” generative modevitich each new Web page
creates link to existent Web pages with a probability distribution with is not unifdaut proportional to
the current in-degree of Web pages. According to this process,eaviiyg many in-links will attract more
in-links that a regular page. This generates a power-law but the resgitupdy differs from the actual Web
graph in other properties such as the presence of small tightly connectedunities.

A different generative model is the “copy” model studied by Kurafial. [KRR*00], in which new
nodes choose an existent node at random and copy a fraction of tkeofitke existent node. This also
generates a power law.

However, if we look at communities of interests in a specific topic, discardiaegrthjor hubs of the
Web, the distribution of links is no longer a power law but resembles more asi@audistribution, as ob-
served by Pennoaét al. [PFL*02] in the communities of the home pages of universities, public companies,
newspapers and scientists. Based on these observations, the auipossem generative model that mixes
preferential attachment with a baseline probability of gaining a link.

M acroscopic structure

The most complete study of the Web structure [BK®O] focuses on the connectivity of a subset of 200
million Web pages from the Altavista search engine. This subset is a conrgretgld, if we ignore the
direction of the links.

The study starts by identifying in the Web graph a single large strongly ctestheomponent (i.e.: all
of the pages in this component can reach one another along directed [iritey call the larger strongly
connected component “MAIN”. Starting in MAIN, if we follow links forwasge find OUT, and if we follow
links backwards we find IN. All of the Web pages with are part of the lgitayt do not fit neither MAIN, IN,
nor OUT are part of a fourth component called TENTACLES.

A page can describe several documents and one document can blarssmeeral pages, so we decided
to study the structure of how Web sites were connected, as Web sites see tdaeal logical units. Not
surprisingly, we found in [BYCO1] that the structure in thel (Chile) domain at the Web site level was
similar to the global Web — another example of the autosimilarity of the Web — arw lvem use the same
notation of [BKM"00]. The components are defined as follows:

(&) MAIN, sites that are in the strong connected component of the cbvitegraph of sites (that is, we
can navigate from any site to any other site in the same component);

(b) IN, sites that can reach MAIN but cannot be reached from MAIN;
(c) OUT, sites that can be reached from MAIN, but there is no path taghk to MAIN; and

(d) other sites that can be reached from IN or can only reach OUT TREMNES), sites in paths between
IN and OUT (TUNNEL), and unconnected sites (ISLANDS).

Figure 2.2 shows all these components.

< i
TENTACLES

Figure 2.2: Macroscopic structure of the Web. The MAIN component is tiggést strongly
connected component in the graph. The IN and OUT componamtseach and be reached
from the MAIN components, and there are other minor strgstuthere is a significant portion
of Web sites which are disconnected from the Web graph inSh&ND portion.

214 User sessionson the Web

User sessions on the Web are usually characterized through modelsdofraurfers, such as the ones
studied by Diligentiet al. [DGMO04]. As we have seen, these models have been used for pddegavith
the Pagerank algorithm [PBMW98], or to sample the Web [HHMNOQO].

The most used source for data about the browsing activities of useth@aiaccess log files of Web
servers, and there are several log file analysis software availabi®4,web04, Bou04, Bar04]. A common
goal for researchers in this area is to try to infer rules in user browstigrmps, such as “40% users that
visit pageA also visit pageB” to assist in Web site re-design. Log file analysis has a number of restdction
arising from the implementation of HTTP, especially caching and proxiesptas iy Haigh and Megarity
[HM98]. Cachingimplies that re-visiting a page is not always recorded, and re-visiting pagesommon
action, and can account for more than 50% of the activity of users, wieasuring it directly in the browser
[TG97]. Proxiesimplies that several users can be accessing a Web site from the samedBsadd

To process log file data, careful data preparation must be done [CNESI®D, TT04]. An important
aspect of this data preparation is to separate automated sessions frerassens. Robot session charac-
terization was studied by Tan and Kumar [TK02].

The visits to a Web site have been modeled as a sequence of decisionsdaynidnét al. [HPPL98,
AHOO0]; they obtain a model for the number of clicks that follows a Zipf’'s lakeveneet al. [LBLO1]
proposed to use an absorbing state to represent the user leaving thet&Velmd analyzed the lengths of
user sessions when the probability of following a link increases with seksigth. Lukose and Huberman
[LH98] also present an analysis of the Markov chain model of a useédilcichrough a Web site, and focus
in designing an algorithm for automatic browsing, which is also the topic of entegork by Liuet al.
[LZYO04].

2.2 Indexing and querying Web pages

The Web search process has two main parts: off-line and on-line.

The off-line part is executed periodically by the search engine, anglsterin downloading a sub-set of
the Web to build a collection of pages, which is then transformed into a sdédedhdex.

The on-line part is executed every time a user query is executed, asdhgsedex to select some
candidate documents that are sorted according to an estimation on homtéheyaeare for the user’s need.
This process is depicted in Figure 2.3.

Web pages come in many different formats such as plain text, HTML pafésdBcuments, and other
proprietary formats. The first stage for indexing Web pages is to exdratandard logical view from the
documents. The most used logical view for documents in search engines‘isaiip of words” model, in

Web Search Engine

Ranking

Searching on-line
(on request)

off-line
Index (periodically)

Indexing

[Collection]

Crawling

i

]

Figure 2.3: A Web search engine periodically downloads and indexes @&stibf Web pages
(off-line operation). This index is used for searching aadking in response to user queries
(on-line operation). The search engine is an interface detvwisers and the World Wide Web.

which each document is seen only as an unordered set of words. kermdéb search engines, this view
is extended with extra information concerning word frequencies and ¢extaftting attributes, as well as
meta-information about Web pages including embedded descriptions aldtekgywords in the HTML
markup.

There are several text normalization operatid?jgtat are executed for extracting keywords, the most
used ones are: tokenization, stopword removal and stemming .

Tokenization involves dividing the stream of text into words. While in someudaggs like English this
is very straighforward and involves just splitting the text using spacegandtuation, in other languages
like Chinese finding words can be very difficult.

Stopwords are words that carry little semantic information, usually functiwoadls that appear in a
large fraction of the documents and therefore have little discriminating paweaskerting relevance. In
information retrieval stopwords are usually discarded also for effigieg@sons, as storing stopwords in an
index takes considerable space because of their high frequency.

Stemming extracts the morphological root of every word. In global seamgimes, the first problem
with stemming is that it is language dependent, and while an English rule-bi@seohig works well, in
some cases like Spanish, a dictionary-based stemmer has to be used, wttiler ilmoguages as German
and Arabic stemming is quite difficult.

Other, more complex operations such as synonim translation, detecting mdlewjaressions, phrase
identification, named entity recognition, word sense disambiguation, etc.sadeim some application do-
mains. However, some of these operations can be computationally expansiif they have large error
rates, then they can be useless and even harm retrieval precision.

10

2.21 Inverted index

Aninverted index is composed of two parts: a vocabulary and a list ofmerces. The vocabulary is a sorted
list of all the keywords, and for each term in the vocabulary, a list of all‘tlaces” in which the keyword
appears in the collection is kept. Figure 2.4 shows a small inverted indesideoimg all words including
stopwords. When querying, the lists are extracted from the inverted antbthen merged. Queries are very
fast because usually hashing in memory is used for the vocabulary,ehstshof occurrences are pre-sorted
by some global relevance criteria.

Document 1: Inverted Index Query: “blue night”
“The blue sky ...” a3 Lists: {1,3} N {2}
at 2 / Response: ¢
Document 2: blue 1,3
“The sky at night ...” | —> car 3 Query: “blue sky”
night 2 Lists: {1,3} N {1,2}
Document 3: sky 1.2 = Response: {1}
¢ bR the 1,2
A blue car ...

Figure 2.4: A sample inverted index with three documents. All tokens @esidered for
the purpose of this example, and the only text normalizatiperation is convert all tokens to
lowercase. Searches involving multiple keywords are sblhising set operations.

The granularity of the choice of the items in the list of occurrences deterriiaesize of the index, and
a small size can be obtained by storing only the document identifiers of ttesponding documents. If the
search engine also stores the position where the term appears on gadheandex is larger, but can be
used for solving more complex queries such as queries for exaceshmgproximity queries.

While the vocabulary grows sub-linearly with the collection size, the list olimences can be very
large. The complete inverted index can occupy from 10% to 20% of theespeaupied by the actual
collection. An inverted index does not fit in main memaory for a Web collectiosgseral partial indices are
built. Each partial index represents only a subset of the collection andtaranerged into the full inverted
index.

In Figure 2.5 the main stages of the indexation process are depicted. Parsigg, links are extracted
to build a Web graph, and they can be analyzed later to generate link-bemes that can be stored along
withe the rest of the metadata.

2.2.2 Distributing query load

Query response time in today’s search engines requires to be venarasshould be done in a parallel
way involving several machines. For parallelization, the inverted indexuallysdistributed among several

11

— @ ©)

Partial
Web Parsing indices
pages [Link extraction —
Indexing
— \,@

Link Metadata Text

index index index

@ Link analysis

Figure 2.5: Indexing for Web search. (1) Pages are parsed and links dratted. (2) Partial
indices are written on disk when main memory is exhaustedl.In(ices are merged into a
complete text index. (4) Off-line link analysis can be usedadlculate static link-based scores.

physical computers. To partition the inverted index, two techniques ade ghkebal inverted file and local
inverted file [7].

When using a global inverted file, the vocabulary is divided into sevends gontaining roughly the
same amount of occurrences. Each computer is assigned a part ot#imilary and all of its occurrences.
Whenever a query is received, the query is sent to the computers htteiggery terms, and the results are
merged afterwards. Hence, load balancing is not easy.

When using a local inverted file, the document identifiers are dividededh computer gets the full
vocabulary. That is, step 3 in figure 2.5 is ommitted. A query is then brotattasall computers, obtaining
good load balance. This is the architecture used in main search engingsa®tailding and maintaining a
global index is hard.

Query processing involves a central “broker” that is assigned theofadiktributing incoming queries
and merging the results. As the results are usually shown in groups of 20 documents per page, the
broker does not need to request or merge full lists, only the top modtsé&sum each partial list.

Search engines exploit the fact that users seldom go past the firstamds page of results. Search
engines provide approximate result counts because they nevenperfatl merge of the partial result lists,

12

so the total number of documents in the intersection can only be estimated. Feaos, when a user asks
for the second or third page of results for a query, it is common that thgudelly is executed again.

2.2.3 Text-based ranking

The vector space mode?|[is the standard technique for ranking documents according to a quegerU
this model, both a document and a query are seen as a pair of vectorsaneavgith as many dimensions
as terms as the vocabulary. In a space defined in this way, the similarity @ tgua document is given
by a formula that transforms each vector using certain weights and thanatakthe cosine of the angle
between the two weighted vectors:

StWig X Wi g

BNCT

In pure text-based information retrieval systems, documents are shows uséehs in decreasing order

using this similarity measure.

A weighting scheme uses statistical properties from the text and the queretoegtain words more
importance when doing the similarity calculation. The most used scheme is thieFwdighting scheme
[SB88], that uses the frequency of the terms in both queries and dotsitnezompute the similarity.

TF stands foterm frequency, and the idea is that a that if a term appears several times in a document
it is better as for describing the contents of that document. The TF is usuahyatized with respect to
document length, that is, the parameter used is the frequency of tiivided by the frequency of the most

frequent term in documerok
freq q

tf,yg=—
Y7 max freqq

IDF stands foinver se document frequency and reflects how frequent a term is in the whole collection.
The rationale is that a term that appears in a few documents gives momaation that a term that appears
in many documents. IN is the number of documents amndif the number of documents containing the
query termt, thenid f; = log [

Using these measures, the weight of each term in given by:

1
wt,q:<2 2tftq) idf, wa=tfg

The 1/2 factor is added to avoid a query term having 0 weight. Several alteena#ighting schemes
have been proposed, but this weighting scheme is one of the most usgitemdood results in practice.

13

2.3 Connectivity-based ranking

Web links provide a source of valuable information. In a context in whicimthmber of pages is very large,
and there are no trusted measures for asserting the quality of pagefinkgetan be used as a collective,
“emerging” measure of page quality.

It is known that Web pages sharing a link are more likely to be topically relatgduticonnected Web
pages [Dav00]. The key assumption of connectivity-based rankieg goe step further, and asserts that a
hyperlink from a pagey’ to a pagep, means, in a certain way, that the content of ppgeendorsed by the
author of pagey.

Several algorithms for connectivity-based ranking based on this asisunape the subject of a survey
by Henzinger [Hen01], and can be partitioned into:

e Query-independent rankinthat assign a fixed score to each page in the collection.

e Query-dependent rankingr topic-sensitive ranking, that assign a score to each page in thetioollec
in the context of a specific query.

2.3.1 Query-independent ranking

The first connectivity based query-independent ranking method aesidyperlink Vector Voting (HVV)
and was introduced by Li [Li98]. The HVV method uses the keywordsagpg inside the links to a Web
page to confer it a higher score on those keywords. Only the courgyafded-link pairs is used, so this
ranking function is relatively easy to manipulate to get an undeservethank

The Pagerank algorithm, introduced by Pageal. [PBMW98], is currently an important part of the
ranking function used by the Google search engine [goo04]. Theititeiiof Pagerank is recursive, stating
in simple terms that “a page with high Pagerank is a page referenced by ragey with high Pagerank”.
Pagerank can be seen as a recursive HVV method.

To calculate the Pagerank, each page on the Web is modeled as a statetémg agd each hyperlink
as a transition between two states. The Pagerank value of a page is thbilityobf being in a given page
when this system reaches its stationary state.

A good metaphor for understanding this is to imagine a “random surferysop who visits pages at
random, and upon arrival to each page, chooses an outgoing linkmihjfat random from the links in that
page. The Pagerank of a page is the fraction of time the random suefedspt each page.

This simple system can be modeled by the following equation of a “simplified &algerin this and
the following equationsp is a Web pagel ~(p) is the set of pages pointing fm andl" " (p) is the set of
pagesp points to.

14

Pagerank(x)

Pagerank(p) = Z 0]

xel = (p)

(2.5)

However, actual Web graphs include many pages with no out-links, wiichsd'rank sinks” as they
accumulate rank but never distribute it to other pages. In stationary stdyethey would have Pagerank
> 0. These pages can be removed from the system and their rank competedlso, we would like pages
not to accumulate ranking by using indirect self-references —self-dir&keasy to remove— not passing all of
their score to other pages. For these reasons, most of the implementatiRageoshnk add “random jumps”
to each page. These random jumps are hyperlinks from every pagepgat in the collection, including
itself, which provide a minimal rank to all the pages as well as a damping éffiest|f-reference schemes.

In terms of the random surfer model, we can state that when choosingxhsteg, the random surfer
either chooses a page at random from the collection with probabijldy chooses to follow a link from the
current page with probability 4 €. This is the model used for calculating Pagerank in practice, and it is
described by the following equation:

Pagerankx)

)] (2.6)

€
Pagerankp) = — + (1—¢) Z
N ~
xel = (p)
N is the number of pages in the collection, and the paransdtetypically between 0.1 and 0.2, based
on empirical evidence. Pagerank is a global, static measure of quality ob g&ge, very efficient in terms
of computation time, as it only has to be calculated once at indexing time and is sattrepeatedly at
query time.

Note that Pagerank can also be manipulated and in fact there are thewsandlions of Web pages
created specifically for the objective of deceiving the ranking functoron et al. [EMT04] found that:

“Among the top 20 URLs in our 100 million page Pagerank calculation using tebgjmmn to
random pages, 11 were pornographic, and they appear to havealabkieved using the same
form of link manipulation. The specific technique that was used was to creaty URLS
that all link to a single page, thereby accumulating the Pagerank that exgeyrpceives from
random teleportation, and concentrating it into a single page of interest.”

Another paradigm for ranking pages based on a Markov chain is arkabg model introduced by
Amati et al. [AOV03, POAO03]. In this model, the original Web graph is transformedragldor each node,
a “clone node” with no out-links. Each clone nogeis only linked from one node in the original graph
When this system reaches stationary state, only the clone nodes hawabifitieb greater than zero. The
probability of the clone nodg' is interpreted as the score of the original ngd& his model performs better
than Pagerank for some information retrieval tasks.

15

A different paradigm for static ranking on the Web is the network flow maadebduced by Tomlin
[Tom03]. For ranking pages, a (sub)graph of the Web is consideyadhmying a finite amount of fluid,
and edges between nodes are pipes for this fluid. Using an entropy maiomizeethod, two measures
are obtained: a “TrafficRank” that is an estimation of the maximum amountwftfioough a node in this
network model, and a “page temperature”, which is a measure of the impeéadVeb page, obtained by
solving the dual of this optimization problem. Both measures can be usedfangaWeb pages, and both
are independent of Pagerank.

The models presented in this section summarize each page on the Web with aasmgler, or a pair
of numbers, but as the creators of Pagerank note, “the importance eba&ge is an inherently subjective
matter that depends on readers interests, knowledge and attitudes” [BBMWIs is why query-dependent
ranking is introduced to create ranking functions that are sensitive ts useds.

2.3.2 Query-dependent ranking

In query-dependent ranking, the starting point is a “neighborhoaplgr a set of pages that are expected to
be relevant to the given query. Carriere and Kazman [CK97] profmobaild this graph by starting with a
set of pages containing the query terms; this set can be the list of remdtslyi a full-text search engine.
Thisroot setis augmented by its “neighborhood” that comprises all (or a large sampile® giages directly

pointing to, or directly pointed by, pages in the root set. The constructmrepure of the neighborhoor set
is shown in Algorithm 1.

Figure 2.6 depicts the process of creation of the neighborhood set. Taefitimiting the number of
pages added to the neighborhood set by following back links was robfoidue original proposal, but was
introduced later [BH98].

Neighborhood set

(
i
&L
<
—+
7]
()
-
\(Xa

i

Figure 2.6: Expansion of the root set with= 5 andd = 2. t is the number of pages in the root
set, andl is the maximum number of back-links to include in the neighbod set.

16

Algorithm 1 Creation of the neighborhood s&i of queryc
Require: o query

Require: t > 0, size of root set.
Require: d > 0 number of back-links to include per page.
1: Ry < topt results using a search engine.
2. S0
3: for all pe Ry do
Let*(p) denote all pagep points to
Let I ~(p) denote all pages pointed kg
S — SUrt(p)
if T~ (p)| <dthen
S —SUlr (p)
else
10: S — SU an arbitrary set ofl pages i —(p)

© ® N o g &

11: end if
12: end for
13: & is the neighborhood set of quesy

Itis customary that when considering links in the neighborhood set, only imdtifferent Web sites are
included, as links between pages in the same Web site are usually createdsayné authors as the pages
themselves, and do not reflect the relative importance of a page fornieeadjeommunity.

The most-cited algorithm, presented by Yuwono and Lee [YL96], is the sitnjoles of connectivity-
based query-dependent ranking: after the neighborhood sekkasbhilt, each pagp in it is assigned a
score that is the sum of the number of query terms appearing in the paigéiagto p. This algorithm
performed poorly when compared with pure content-based analysigsamghors concluded that links by
themselves are not a reliable indicator of semantic relationship between \§eb. pa

A more complex idea is the HITS algorithm presented by Kleinberg [Kle99]sHzsed on considering
that relevant pages can be either “authority pages” or “hub pages’authority page is expected to have
relevant content for a subject, and a hub page is expected to have mantolisuthority pages.

The HITS algorithm produces two scores for each page, called “atytsoore” and “hub score”. These
two scores have a mutually-reinforcing relationship: a page with high &tytlscore is pointed to by many
pages with a high hub score, and a page with a high hub score points to mgey with a high authority
score, as shown in Figure 2.7.

An iterative version of this algorithm is shown in Algorithm 2; in this version,rihenber of iterations
is fixed, but the algorithm can be adapted to stop based on the conveigfehe sequence of iterations.

The HITS algorithm suffers from several drawbacks in its pure formm& of them were noted and

17

Authority Authority

Figure 2.7: Hubs and authorities in a small graph. Node 4 is the best hge, @ it points to
many authorities, and nodesandg are the best authority pages.

Algorithm 2 Hub and authority score for each pageSin
Require: S neighborhood set of query

Require: k number of iterations

1: N+ |

2: Letzdenote the vectal,1,1,...1) € R

3. Hy«— 2z

4: Ag— 2

5. for j=1tokdo

6: fori=1tondo

7: Hj[i] < Yxer+i)Aj-1[X] {T*(i) are pages points tg
8: Aj[i] < Yxer—a)Hj[x] {T (i) are pages pointing tig
9: end for
10: NormalizeH; andA; so their components sum 1
11: end for
12: Hy is the vector of hub scores

Iy
w

. A is the vector of authority scores

solved by Bharat and Henzinger [BH98]:

(a) Not all the documents in the neighborhood set are about the origpial(ttopic drifting”).
(b) There are nepotistic, mutually-reinforcing relationships between.hosts

(c) There are many automatically generated links.

Problem (a) is the most important, as while expanding the root set, it is commanudeérpopular pages
that are highly-linked, but unrelated to the query topic. The solution is tangkysis of the contents of the
documents when executing Algorithm 1, and pruning the neighborhoguh dmaremoving the documents
that are too different from the query. This is done using a thresholthiostandard TF-IDF measure of
similarity [SB88] between documents and queries.

18

Problems (b) and (c) can be avoided using the following heuristic: if therke @edges from documents
on a host to documents in another host, then each edge is given a welght dhis gives each document
the same amount of influence on the final score, regardless of the nofriimds in that specific document.

A different variation of the HITS algorithm, designed specifically to avoigltadrifting”, was pre-
sented by Chakrabarit al. [CDR"98]. In their approach, for each link, the text near it in the origin page
and the full text of the destination page are compared. If they are simildmkhis given a high weight, as
it carries information about semantic similarity between the origin and destinadigesp As this heuristic
keeps the pages in the neighborhood set more closely related, a mosslrelgansion phase can be done.
The authors propose to follow two levels of links forward and backwesthfthe root set, instead of just
one.

Another approach to query-dependent ranking is topic-sensitiver®alg introduced by Haveliwala
[Hav02], in this method, multiple scores for each page are pre-computatkaing time, using an algorithm
similar to Pagerank. Each score represents the importance of a pagelidopic from a set of pre-defined
topics. At query time, the ranking is done using the query to assign weighte diftarent topic-sensitive
Pagerank scores of each page.

24 Web crawling issues

There are two important characteristics of the Web that generate a iscenahich Web crawling is very
difficult: its large volume and its rate of change, as there is a huge amouagegeing added, changed
and removed every day. Also, network speed has improved less thamicprocessing speeds and storage
capacities. The large volume implies that the crawler can only downloadtefraxt the Web pages within

a given time, so it needs to prioritize its downloads. The high rate of chande@tpat by the time the
crawler is downloading the last pages from a site, it is very likely that negephave been added to the site,
or that pages that have already been updated or even deleted.

Crawling the Web, in a certain way, resembles watching the sky in a clear mitjat we see reflects
the state of the stars at different times, as the light travels different destaw¢hat a Web crawler gets is not
a “snapshot” of the Web, because it does not represents the Wepgitan instant of time [BYRN99]. The
last pages being crawled are probably very accurately represéntetie first pages that were downloaded
have a high probability of have been changed. This idea is depicted ireR2gir

As Edwardset al. note, “Given that the bandwidth for conducting crawls is neither infinitefres it
is becoming essential to crawl the Web in a not only scalable, but effic@pifv@ome reasonable measure
of quality or freshness is to be maintained.” [EMTO01]. A crawler mustfcdlsechoose at each step which
pages to visit next.

The behavior of a Web crawler is the outcome of a combination of policies:

19

World Wide Web

b

~— days, weeks, or months

Search engine's view
User

Figure 2.8: As the crawling process takes time and the Web is very dynaimicsearch en-
gine’s view of the Web represents the state of Web pagesfatelift times. This is similar to
watching the sky at night, as the stars we see never existedtaneously as we see them.

A selection policythat states which pages to download.

A re-visit policythat states when to check for changes to the pages.

A politeness policyhat states how to avoid overloading Web sites.

A parallelization policythat states how to coordinate distributed Web crawlers.

24.1 Selection policy

Given the current size of the Web, even large search engines calyea portion of the publicly available

content; a study by Lawrence and Giles [LGO00] showed that no seagiheeindexes more than 16% of
the Web. As a crawler always downloads just a fraction of the Web pégeshighly desirable that the

downloaded fraction contains the most relevant pages, and not jusi@amasample of the Web.

This requires a metric of importance for prioritizing Web pages. The impagtaha page is a function
of its intrinsic quality, its popularity in terms of links or visits, and even of its URLe(tatter is the case
of vertical search engines restricted to a single top-level domain, ochseaigines restricted to a fixed
Website). Designing a good selection policy has an added difficulty: it mudt with partial information,
as the complete set of Web pages is not known during crawling.

In experiments by Chet al. [CGMP98], a series of importance metrics were tested to download pages
from thest anf or d. edu domain. They found that ordering pages by Pagerank (calculatedhm/@artial
set of pages already downloaded) leads to crawling highly-refedegmages first, regardless of the starting

20

URLSs, while ordering by pure count of references results in a biasrttstacally important pages, and does
not achieve a good global ordering.

In a different study by Najork and Wiener [NWO01], several million pagesoss 7 million Web sites
were downloaded using different policies. They discovered thadbndast crawl is the best strategy to
download pages with good Pagerank early in the crawl, and that the qualityoloaded pages deteriorates
as the crawling process advances. The explanation given by the sditihdhis result is that “the most
important pages have many links to them from numerous hosts, and thoseilindesfound early, regardless
of on which host or page the crawl originates”.

The importance of a page for a crawler can also be expressed as ariurictiee similarity of a page
to a given query. This is called “focused crawling” and was introduge@lakrabartiet al. [CvD99]. The
main problem in focused crawling is that in the context of a Web crawler, swdanike to be able to predict
the similarity of the text of a given page to the qudrgforeactually downloading the page. A possible
predictor is the anchor text of links; this was the approach taken by Ramkg?in94] in a crawler developed
in the early days of the Web. Diligenit al. [DCL*00] propose to use the complete content of the pages
already visited to infer the similarity between the driving query and the pagébdlie not been visited yet.
The performance of a focused crawling depends mostly on the richhés&in the specific topic being
searched, and a focused crawling usually relies on a general Welh sgggine for providing starting points.

2.4.2 Re-visit policy

The Web has a very dynamic nature, and crawling a fraction of the Weltakana long time, usually
measured in weeks or months. By the time a Web crawler has finished its cramy,avents could have
happened. We characterize these events as creations, updatetetindglBYCSJ04]:

Creations When a page is created, it will not be visible on the public Web space until itkedinso we
assume that at least one page update —adding a link to the new Web pageecausor a Web page
creation to be visible.

A Web crawler starts with a set of starting URLSs, usually a list of domain naswesegistering a
domain name can be seen as the act of creating a URL. Also, under soeneescbf cooperation the
Web server could provide a list of URLs without the need of a link, as shiowhapter??.

Updates Page changes are difficult to characterize: an update can be wither, or major. An update
is minor if it is at the paragraph or sentence level, so the page is semanticallgtahmcsame and
references to its content are still valid. On the contrary, in the case of a ogajate, all references to
its content are not valid anymore. It is customary to consaagrupdate asnajor, as it is difficult to
judge automatically if the page’s content is semantically the same. Characteriabpartial changes
is studied in [LWP 01, NCOO04].

21

Deletions A page is deleted if it is removed from the public Web, or if all the links to thaepag removed.
Note that even if all the links to a page are removed, the page is no longdevisthe Web site, but
it will still be visible by the Web crawler. It is almost impossible to detect that aegeas lost all its
links, as the Web crawler can never tell if links to the target page are eeept, or if they are only
present in pages that have not been crawled.

Undetected deletions are more damaging for a search engine’s reputatioopgtates, as they are
more evident to the user. The study by Lawrence and Giles about saggtte performance [LGO0O]
reports that on average 5.3% of the links returned by search engimésqdeleted pages.

Cost functions

From the search engine’s point of view, there is a cost associated vitletexting an event, and thus having
an outdated copy of a resource. The most used cost functions, iogddiu [CGMOO], are freshness and
age.

Freshness This is a binary measure that indicates whether the local copy is accunat¢. orhe freshness
of a pagep in the repository at timeis defined as:

1 if p is equal to the local copy at tinte
Fo(t) = (2.7)
0 otherwise
Age This is a measure that indicates how outdated the local copy is. The agegép im the repository,

at timet is defined as:

0 if p is not modified at time
Ap(t) = (2.8)
t — modification time ofp otherwise

The evolution of these two quantities is depicted in Figure 2.9.

Coffmanet al. [EGC98] worked with a definition of the objective of a Web crawler that isiejent to
freshness, but use a different wording: they propose that a arawdst minimize the fraction of time pages
remain outdated. They also noted that the problem of Web crawling can beledaaks a multiple-queue,
single-server polling system, on which the Web crawler is the server alehesites are the queues. Page
modifications are the arrival of the customers, and switch-over times anmetéineal between page accesses
to a single Web site. Under this model, mean waiting time for a customer in the pollitegrsissequivalent
to the average age for the Web crawler.

22

Sync. Modify Sync. Modify

Freshness
Fyft

» Timet

| | | |

| | | |

I I I I

| | | |

N

Age I I

| |

At 1 1

p(t) | |

| |
» Timet

Figure 2.9: Evolution of freshness and age with time. Two types of evantaccur: modifi-
cation of a Web page in the server (everddify) and downloading of the modified page by the
crawler (evensyng.

Strategies

The objective of the crawler is to keep the average freshness of paigesollection as high as possibly, or

to keep the average age of pages as low as possible. These objeatived aquivalent: in the first case,
the crawler is just concerned witiow manypages are out-dated, while in the second case, the crawler is
concerned witthow oldthe local copies of pages are.

Two simple re-visiting policies were studied by Cho and Garcia-Molina [CGM03

Uniform policy This involves re-visiting all pages in the collection with the same frequenggrdéess of
their rates of change.

Proportional policy This involves re-visiting more often the pages that change more frequé&hngyvisit-
ing frequency is directly proportional to the (estimated) change frequenc

In both cases, the repeated crawling order of pages can be doneatitaedom or with a fixed order.

Cho and Garcia-Molina proved the surprising result that, in terms of gedrashness, theniform
policy outperforms thgproportional policyin both a simulated Web and a real Web crawl. The explanation
for this result comes from the fact that, when a page changes too oftecraivler will waste time by trying
to re-crawl it too fast and still will not be able to keep its copy of the pagstr "To improve freshness, we
should penalize the elements that change too often” [CGMO03a].

The optimal re-visiting policy is neither the uniform policy nor the proportigmalicy. The optimal

23

method for keeping average freshness high includes ignoring the fhegesange too often, and the optimal
for keeping average age low is to use access frequencies that moatiyofsind sub-linearly) increase with
the rate of change of each page. In both cases, the optimal is closer taithenupolicy than to the
proportional policy: as Coffmaet al. [EGC98] note, “in order to minimize the expected obsolescence time,
the accesses to any particular page should be kept as evenly spacssiate”.

Explicit formulas for the re-visit policy are not attainable in general, bug Hre obtained numerically,
as they depend on the distribution of page changes. Note that the re-vjmitioigs considered here regard
all pages as homogeneous in terms of quality —all pages on the Web aretieos@ime— something that is
not a realistic scenario, so further information about the Web page quhatitydbe included to achieve a
better crawling policy.

2.4.3 Politeness policy

As noted by Koster [Kos95], the use of Web robots is useful for a narmobisks, but comes with a price
for the general community. The costs of using Web robots include:

Network resources, as robots require considerable bandwidth,pemdte with a high degree of par-

allelism during a long period of time.

Server overload, especially if the frequency of accesses to a givearss too high.

Poorly written robots, which can crash servers or routers, or whiembkb@d pages they cannot handle.

Personal robots that, if deployed by too many users, can disrupt nestand Web servers.

A partial solution to these problems is the robots exclusion protocol [Kogf#]is a standard for
administrators to indicate which parts of their Web servers should not lessext by robots. This standard
does not include a suggestion for the interval of visits to the same sergarttough this interval is the most
effective way of avoiding server overload.

The first proposal for the interval between connections was giveiKas93] and was 60 seconds.
However, if we download pages at this rate from a Web site with more thajoQ@@ages over a perfect
connection with zero latency and infinite bandwidth, it would take more than 2hwda download only
that entire Web site; also, we would be using a fraction of the resouraestfrat Web server permanently.
This does not seems acceptable.

Cho [CGMO03b] uses 10 seconds as an interval for accesses, aWd®te crawler [BYCO02] uses 15
seconds as the default. The Mercator Web crawler [HN99] follows apta@ politeness policy: if it took
seconds to download a document from a given sever, the crawler wait8 t seconds before downloading
the next page. Dilét al. [?] use 1 second.

24

Anecdotal evidence from access logs shows that access interval&rfimvn crawlers vary between 20
seconds and 3—4 minutes. It is worth noticing that even when being véry, gnd taking all the safeguards
to avoid overloading Web servers, some complaints from Web server athatiois are received. Brin and
Page note that:

“... running a crawler which connects to more than half a million servers (...¢rgees a fair
amount of email and phone calls. Because of the vast number of peaplegcon line, there
are always those who do not know what a crawler is, because this isshenfe they have seen.”
[BP98].

244 Parallelization policy

A parallel crawler is a crawler that runs multiple process in parallel. Theigda maximize the download
rate while minimizing the overhead from parallelization and to avoid repeatedidads of the same page.

To avoid downloading the same page more than once, the crawling systeinessgpolicy for assigning
the new URLs discovered during the crawling process, as the same URhecéound by two different
crawling processes. Cho and Garcia-Molina [CGMO02] studied two typpslizy:

Dynamic assignment With this type of policy, a central server assigns new URLs to differeaiviars
dynamically. This allows the central server to, for instance, dynamicallynbalthe load of each

crawler.

With dynamic assignment, typically the systems can also add or remove downpradesses. The
central server may become the bottleneck, so most of the workload mustsketesl to the distributed
crawling processes for large crawls.

There are two configurations of crawling architectures with dynamic assighthat have been de-
scribed by Shkapenyuk and Suel [SS02]:

e A small crawler configuration, in which there is a central DNS resolvercamiral queues per
Web site, and distributed downloaders.

e A large crawler configuration, in which the DNS resolver and the quetgeslso distributed.

Static assignment With this type of policy, there is a fixed rule stated from the beginning of theldteat
defines how to assign new URLSs to the crawlers.

For static assignment, a hashing function can be used to transform URlev¢o better, complete
Web site names) into a number that corresponds to the index of the cordesperawling process.
As there are external links that will go from a Web site assigned to ondingpprocess to a Web site
assigned to a different crawling process, some exchange of URLs guust o

25

To reduce the overhead due to the exchange of URLS between crawditesses, the exchange should
be done in batch, several URLs at a time, and the most cited URLSs in the collsbtiold be known
by all crawling processes before the crawl (e.g.: using data fromvéopiecrawl) [CGMO02].

An effective assignment function must have three main properties: eaalirgg process should get
approximately the same number of hosts (balancing property), if the nurhbeavaing processes grows,
the number of hosts assigned to each process must shrink (contnaeeapioperty), and the assignment
must be able to add and remove crawling processes dynamically. &oddi [BCSV02] propose to use
consistent hashing, which replicates the buckets, so adding or remadviralet does not requires re-hashing
of the whole table to achieve all of the desired properties.

2.5 Web crawler architecture

A crawler must have a good crawling strategy, as noted in the previotiersgdut it also needs a highly
optimized architecture. Shkapenyuk and Suel [SS02] noted that:

“While it is fairly easy to build a slow crawler that downloads a few pagespeond for a short
period of time, building a high-performance system that can download adsdrf millions of
pages over several weeks presents a number of challenges in systigmed!, I/O and network
efficiency, and robustness and manageability.”

Web crawlers are a central part of search engines, and details omld@ithms and architecture are
kept as business secrets. When crawler designs are publishedjstiodten an important lack of detail
that prevents other from reproducing the work. There are also engecgimcerns about “search engine
spamming”, which prevent major search engines from publishing theimmgualkgorithms. The typical high-
level architecture of Web crawlers is shown in Figure 2.10.

25.1 Examplesof Web crawlers

The following is a list of published crawler architectures for generappse crawlers (excluding focused
Web crawlers), with a brief description that includes the names given taiffeeeddt components and out-
standing features:

RBSE [Eic94] was the first published Web crawler. It was based on two progr the first program,
“spider” maintains a queue in a relational database, and the secondipragite”, is a modifiedww
ASCII browser that downloads the pages from the Web.

26

World Wide
Web

Web pages

URLs Multi-threaded
Scheduler >
downloader Text and
metadata
L
Queune |«
URLs
\ Storage

Figure 2.10: Typical high-level architecture of a Web crawler.

WebCrawler [Pin94] was used to build the first publicly-available full-text index of a-sebof the Web.
It was based on lib-WWW to download pages, and another program $e aud order URLs for
breadth-first exploration of the Web graph. It also included a real-tiraler that followed links
based on the similarity of the anchor text with the provided query.

World Wide Web Worm [McB94] was a crawler used to build a simple index of document titles and URLs
The index could be searched by using ghep UNIX command.

Internet Archive Crawler [Bur97] is a crawler designed with the purpose of archiving periodapshots
of a large portion of the Web. It uses several process in a distribusdiofa and a fixed number
of Web sites are assigned to each process. The inter-process geafadRLs is carried in batch
with a long time interval between exchanges, as this is a costly processnt€heet Archive Crawler
also has to deal with the problem of changing DNS records, so it keepstamical archive of the
hostname to IP mappings.

WebSPHINX [MB98] is composed of a Java class library that implements multi-threaded Al ne-
trieval and HTML parsing, and a graphical user interface to set thérgfddRLs, to extract the
downloaded data and to implement a basic text-based search engine.

Google Crawler [BP98] is described in some detail, but the reference is only about &n\easion of
its architecture, which was based in C++ and Python. The crawler wasatedgwith the indexing
process, because text parsing was done for full-text indexing andaals)RL extraction. There is an
URL server that sends lists of URLSs to be fetched by several crawlingegses. During parsing, the
URLs found were passed to a URL server that checked if the URL hese previously seen. If not,

27

the URL was added to the queue of the URL server.

CobWeb [dSVG'99] uses a central “scheduler” and a series of distributed “collect®ts collectors parse
the downloaded Web pages and send the discovered URLSs to the schetlidh in turns assign them
to the collectors. The scheduler enforces a breadth-first searehwitth a politeness policy to avoid
overloading Web servers. The crawler is written in Perl.

Mercator [HN99] is a modular Web crawler written in Java. Its modularity arises fromusege of in-
terchangeable “protocol modules” and “processing modules”. Pristmcodules are related to how
to acquire the Web pages (e.g.. by HTTP), and processing moduleslatexdreo how to process
Web pages. The standard processing module just parses the pagedrantdnew URLS, but other
processing modules can be used to index the text of the pages, or togjatistics from the Web.

WebFountain [EMTO01] is a distributed, modular crawler similar to Mercator but written in Cktfeatures
a “controller” machine that coordinates a series of “ant” machines. A#tpeatedly downloading
pages, a change rate is inferred for each page and a non-lineaamrogqg method must be used
to solve the equation system for maximizing freshness. The authors recahtonese this crawling
order in the early stages of the crawl, and then switch to a uniform crawtagy,an which all pages
being visited with the same frequency.

PolyBot [SS02] is a distributed crawler written in C++ and Python, which is composed‘crawl man-
ager”, one or more “downloaders” and one or more “DNS resolvetsillected URLs are added to
a queue on disk, and processed later to search for seen URLs in batdeh foe politeness policy
considers both third and second level domains (euga. exanpl e. comandww?2. exanpl e. comare
third level domains) because third level domains are usually hosted byrttee\Web server.

WebRACE [2YDO02] is a crawling and caching module implemented in Java, and usedas af g more
generic system called eRACE. The system receives requests frosrfarsdownloading Web pages, so
the crawler acts in part as a smart proxy server. The system also saegilests for “subscriptions” to
Web pages that must be monitored: when the pages changes, they mustieaded by the crawler
and the subscriber must be notified. The most outstanding feature of MEbI that, while most
crawlers start with a set of “seed” URLs, WebRACE is continuouslyivéwg new starting URLS to

crawl from.

Ubicrawler [BCSV02]is a distributed crawler written in Java, and it has no centralga® It is composed
of a number of identical “agents”; and the assignment function is calculstied consistent hashing
of the host names. There is zero overlap, meaning that no page is citswided unless a crawling
agent crashes (then, another agent must re-crawl the pages feciailthg agent). The crawler is
designed to achieve high scalability and to be tolerant to failures.

28

FAST Crawler [RMO02] is the crawler used by the FAST search engine, and a genesatiption of its
architecture is available. It is a distributed architecture in which each mabbide a “document
scheduler” that maintains a queue of documents to be downloaded by anidat processor” that
stores them in a local storage subsystem. Each crawler communicates withéherawlers via a
“distributor” module that exchanges hyperlink information.

WIRE [BYCO02, CBYO02] is the crawler developed for this research, and isrileed in detail in Chapte??
of this thesis.

In addition to the specific crawler architectures listed above, there aerajarawler architectures
published by Cho [CGMO02] and Chakrabarti [Cha03].

A few Web crawlers have been released under the GNU public licensdainLgAil04], WebBase
[Dac02], a free version of WebSPHINX [Mil04], GRUB [gru04] andrDig [htd04]. For commercial
products, see [SS04, bot04].

About practical issues of building a Web crawler, which is the subjectppfehdix??, a list of recom-
mendations for building a search engine was written by Patterson [Pat04].

2.5.2 Architecturesfor cooperation between Web sites and search engines

We study cooperation schemes for Web servers in Cha@ptén this thesis, we only consider the cooperation
between Web servers and crawlers, not between crawlers: this isstuelisd in [McL02], using a crawler
simulator and proving that crawlers can benefit from sharing informatimutalast-modification date of
pages. In this case, the cooperation between search engines dccrawlag time, but search engines
could also exchange information later, like in the “STARTS” proposal [(MES7].

There are several methods for keeping mirrors (replicas) of informaéorices; these methods are not
directly suitable for Web server cooperation because the crawler ussiailgrested in only a subset of the
pages (the most interesting ones) and not in the entire site. Mirroring methladadarRSYNC [TPO03], that
generates a series of fingerprints for “chunks” of data, and thenaasphose fingerprints to compress and
send only the modified parts. CTM [KamO03] is a method for sending diffeern@ e-mail, used to keep
copies of source code for the Open BSD operating systems up-to-date.

A specific proposal for pushing last-modification data to Web crawlereisemted by Gupta and Camp-
bell [GCO1], including a cost model in which the meta-data is sent only if thb ¥ite is misrepresented
above a certain threshold in the search engine. A more general Imetifetation system was presented by
Brandt and Kristensen [BK97].

The Distribution and Replication Protocol (DRP) [VHGBI7] provides a protocol to distribute data
using HTTP and data fingerprinting and index files. Another propostles a series of files containing
descriptions of Web pages, is presented in [BCGMSO00].

29

DASL [RRDBO02], the DAV searching and locating protocol, is a proposédresion to DAV that will
allow searching the Web server using an HTTP query with certain extendiahneither the query syntax
nor the query semantics are specified by the protocol.

2.6 Conclusions

In this chapter, we have surveyed selected publications from the relatidhvat are relevant for this thesis.
We have focused in link analysis and Web crawling.

In the literature, we found that link analysis is an active research topic imtbanation retrieval
community. The Web is very important today because it is the cornerstone affdrmation age, and is
used by millions of persons every day, and it is natural that it providestmties for both business and
research. Link analysis is, in a sense, the most important “new” compofhtire Web in relation to previous
document collections and traditional information retrieval, and probably #u&i& why the field of link
analysis has been so active.

On the contrary, the topic of Web crawling design is not represented banvtke literature, as there
are few publications available. Web crawling research is affected hipdasssecrecy because Web search
engines, in a sense, mediate the interaction between users and Web sies thiedkey for success of many
Web sites. There is also secrecy involved because there are manyrabeut search engine spamming,
because there are no known ranking functions absolutely resilient to niglioi@nipulation, so ranking
functions and crawling methods are usually not published.

The next chapter starts the main part of this thesis by presenting a nelingravedel and architecture.

30

Bibliography

[AHOO0] Eytan Adar and Bernardo A. Huberman. The economics of wefing). InPoster Proceedings
of the Ninth Conference on World Wide Walmsterdam, Netherlands, May 2000.

[Ail04] Sebastien Ailleret. Larbin. http://larbin.sourceforge.net/index-eing,i2004. GPL software.

[AOVO03] G. Amati, I. Ounis, and Plachouras V. The dynamic absorbingehfmt the web. Technical
Report TR-2003-137, Department of Computing Science, UniversiGlaggow, April 2003.

[BA99] Albert-Laszb Baratasi and Rka Albert. Emergence of scaling in random netwofksience
286(5439):509-512, October 1999.

[Bar01] Albert-Laszb Baralasi. The physics of the weBhysicsWeb.ORG, online journduly 2001.
[Bar02] Albert-Laszb Baralasi. Linked: the new science of networl@erseus Publishing, 2002.

[Bar04] Bradford L. Barrett. WebAlizer: log file analysis program. httpwiwmrunix.net/webalizer/,
2004.

[BCFT03] Andras A. Bencar, Karoly Csalo@ny, Daniel Fogaras, Eszter Friedman, Tas1Sarbs, Maté
Uher, and Eszter Windhager. Searching a small national domain — a prelméegeort. In
Poster Proceedings of Conference on World Wide \Beldapest, Hungary, May 2003.

[BCGMSO00] Onn Brandman, Junghoo Cho, Hector Garcia-Molina, amdynan Shivakumar. Crawler-
friendly web servers. IfProceedings of the Workshop on Performance and Architecture of
Web Servers (PAWS3anta Clara, California, USA, June 2000.

[BCST00] Brian Brewington, George Cybenko, Raymie Stata, Krishna Bhardt-arzin Maghoul. How
dynamic is the web? IRroceedings of the Ninth Conference on World Wide \Wehges 257
— 276, Amsterdam, Netherlands, May 2000.

[BCSV02] Paolo Boldi, Bruno Codenotti, Massimo Santini, and SebastianmaVitbicrawler: A scal-
able fully distributed web crawler. IRroceedings of the eight Australian World Wide Web
Conference (AusWel002.

31

[BHO8]

[BK97]

[BKM +00]

[bot04]
[Bou04]

[BP9Sg]

[BS00]

[Bur97]

[BYO3]

[BYCO1]

[BYCO2]

[BYCSJ04]

[BYPO3]

Krishna Bharat and Monika R. Henzinger. Improved algorithmrstbpic distillation in a
hyperlinked environment. IRroceedings of the 21st Annual International ACM SIGIR Con-
ference on Research and Development in Information Retripegles 104—-111, Melbourne,
Australia, August 1998. ACM Press, New York.

S. Brandt and A. Kristensen. Web push as an Internet Ndiific&ervice. InW3C workshop
on push technologyBoston, MA, USA, 1997.

Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Ragha Sridhar Rajagopalan,
Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure in theBxperiments

and models. IrProceedings of the Ninth Conference on World Wide Vigelges 309-320,
Amsterdam, Netherlands, May 2000.

Botspot. http://www.botspot.com/, 2004.
Thomas Boutell. WUsage: Web log analysis software. http://wwwetiozom/wusage/, 2004.

Sergei Brin and Lawrence Page. The anatomy of a largetsgadetextual Web search engine.
Computer Networks and ISDN SysteB®(1-7):107-117, April 1998.

Bettina Berendt and Myra Spiliopoulou. Analysis of navigationavébur in web sites inte-
grating multiple information system3.he VLDB journal (9):56-75, 2000.

Mike Burner. Crawling towards eternity - building an archivettodé world wide web.Web
Techniques2(5), May 1997.

Ricardo Baeza-Yates. The Web of SpailPGRADE 3(3):82—-84, 2003.

Ricardo Baeza-Yates and Carlos Castillo. Relating Web chaistate with link based Web
page ranking. IrfProceedings of String Processing and Information Retriepafjes 21-32,
Laguna San Rafael, Chile, November 2001. IEEE CS Press.

Ricardo Baeza-Yates and Carlos Castillo. Balancing volumeljtguand freshness in web
crawling. InSoft Computing Systems - Design, Management and Applicapages 565—
572, Santiago, Chile, 2002. 10S Press Amsterdam.

Ricardo Baeza-Yates, Carlos Castillo, and Felipe Saint-J&&t Dynamicschapter Web
Dynamics, Structure and Page Quality, pages 93—109. Springer, 2004.

Ricardo Baeza-Yates anchBbara Poblete. Evolution of the Chilean Web structure composi-
tion. In Proceedings of Latin American Web Conferemuages 11-13, Santiago, Chile, 2003.
IEEE CS Press.

32

[BYRN99]

[CBY02]

[CDR"98]

[CGMOO0]

[CGMO2]

[CGMO033]

[CGMO3b]

[CGMP9S]

[Cha03]

[Cho0O0]

[CK97]

[CMS99]

Ricardo Baeza-Yates and Berthier Ribeiro-Né#tmdern Information RetrievalACM Press /
Addison-Wesley, 1999.

Carlos Castillo and Ricardo Baeza-Yates. A new crawling modePolster proceedings of
the eleventh conference on World Wide Webnolulu, Hawaii, USA, May 2002. (Extended
Poster).

Soumen Chakrabarti, Byron Dom, Prabhakar Raghavan, Sridtjagépalan, David Gibson,
and Jon Kleinberg. Automatic resource compilation by analyzing hyperlinictstre and
associated text. IWorld Wide Web Conferencpages 65—74, Brisbane, Australia, 1998.
Elsevier Science Publishers B. V.

Junghoo Cho and Hector Garcia-Molina. Synchronizing abdesato improve freshness. In
Proceedings of ACM International Conference on Management of [BIaMOD) pages
117-128, Dallas, Texas, USA, May 2000.

Junghoo Cho and Hector Garcia-Molina. Parallel crawlersPrbceedings of the eleventh
international conference on World Wide Wgdages 124-135, Honolulu, Hawaii, USA, May
2002. ACM Press.

Junghoo Cho and Hector Garcia-Molina. Effective pa@esk policies for web crawlers.
ACM Transactions on Database Syste@®&(4), December 2003.

Junghoo Cho and Hector Garcia-Molina. Estimating frequehcliange. ACM Transactions
on Internet Technology(3), August 2003.

Junghoo Cho, Hector G&eMolina, and Lawrence Page. Efficient crawling through URL
ordering. InProceedings of the seventh conference on World Wide Bfitbane, Australia,
April 1998.

Soumen Chakrabari¥ining the Web Morgan Kaufmann Publishers, 2003.

Junghoo Cho. The evolution of the web and implications for areinental crawler. In
Proceedings of 26th International Conference on Very Large Daebh ¢l DB) pages 527—
534, Cairo, Egypt, September 2000. Morgan Kaufmann Publishers.

S. Jeromy Carére and Rick Kazman. Webquery: searching and visualizing the wehgtnrou
connectivity. Computer Networks and ISDN Syste@&(8-13):1257-1267, September 1997.

Robert Cooley, Bamshad Mobasher, and Jaideep Srigaflata preparation for mining world
wide web browsing pattern&knowledge and Information System$1):5-32, 1999.

33

[CvD99]

[Dac02]

[Dav00]

[DCL+00]

[DFKM97]

[DGMO04]

[dSVG+99]

[Eco02]

[EGC98]

[Eic94]

[EMTO1]

[EMTO4]

Soumen Chakrabarti, Martin van den Berg, and Byron Dom.used crawling: a new ap-
proach to topic-specific web resource discove&lgmputer Networks31(11-16):1623-1640,
1999.

Lois Dacharay. WebBase. http://freesoftware.fsf.org/wsdbh@002. GPL Software.

Brian D. Davison. Topical locality in the web. Rroceedings of the 23rd annual international
ACM SIGIR conference on research and development in informatidavetrpages 272—-279.
ACM Press, 2000.

Michelangelo Diligenti, Frans Coetzee, Steve Lawrence, C. Lee GitesMarco Gori. Fo-
cused crawling using context graphs.Aroceedings of 26th International Conference on Very
Large Databases (VLDBpages 527-534, Cairo, Egypt, September 2000.

Fred Douglis, Anja Feldmann, Balachander Krishnamurthy deffrey C. Mogul. Rate of
change and other metrics: a live study of the world wide webUSENIX Symposium on
Internet Technologies and Systerpages 147-158, Monterey, California, USA, December
1997.

Michelangelo Diligenti, Marco Gori, and Marco Maggini. A unifietbpabilistis framework
for Web page scoring systemdEEE Transactions on Knowledge and Data Engineering
16(1):4-16, 2004.

Altigran Soares da Silva, Eveline A. Veloso, Paulo Braz GolgherthBarA. Ribeiro-Neto,
Alberto H. F. Laender, and Nivio Ziviani. Cobweb - a crawler for thadilian web. In
Proceedings of String Processing and Information Retrieval (SPIRig)es 184—-191, Cancun,
México, September 1999. IEEE CS Press.

The Economist. What does the internet look liKéie EconomistOctober 2002.

R. Weber Edward G. Coffman, Z. Liu. Optimal robot schedulimgvieb search engines.
Journal of Schedulingl(1):15-29, 1998.

D. Eichmann. The RBSE spider: balancing effective searaimagweb load. IfProceedings
of the first World Wide Web Conferen€geneva, Switzerland, May 1994.

Jenny Edwards, Kevin S. McCurley, and John A. Tomlin. Aade model for optimizing
performance of an incremental web crawlerPitoceedings of the Tenth Conference on World
Wide Webpages 106-113, Hong Kong, May 2001. Elsevier Science.

Nadav Eiron, Kevin S. McCurley, and John A. Tomlin. Ranking\reb frontier. InProceed-
ings of the 13th international conference on World Wide Welges 309-318. ACM Press,
2004.

34

[ER60]

[FMNWO3]

[GCO1]

Paul Erés and Alfred Rnyi. Random graphsPublication of the Mathematical Institute of
the Hungarian Acadamy of Sciené&e17 — 61, 1960.

Dennis Fetterly, Mark Manasse, Marc Najork, and Jan&Viener. A large-scale study of the
evolution of web pages. IRroceedings of the Twelfth Conference on World Wide, \(abtes
669 — 678, Budapest, Hungary, May 2003. ACM Press.

Vijay Gupta and Roy H. Campbell. Internet search engine fesshhy web server help. In
Proceedings of the Symposium on Internet Applications (SAlNiGes 113-119, San Diego,
California, USA, 2001.

[GCGMP97] Luis Gravano, Kevin Chen-Chuan Chang, Hector Gavimdna, and Andreas Paepcke.

[goo04]
[gru04]

[GS96]

[GS03]

[HA99]

[Hav02]

[Hen01]

[HHMN99]

[HHMNOO]

STARTS: Stanford proposal for internet meta-searching. In JoakhRen, editorProceed-
ings of International Conference on Management of Data (SIGM@BYyes 207—-218. ACM
Press, 1997.

Google search engine. http://www.google.com/, 2004.
Grub, a distributed crawling project. http://www.grub.org, 200RLGoftware.

James Gwertzman and Margo Seltzer. World-wide web cachestargy. InProceedings of
the 1996 Usenix Technical Conferen&an Diego, California, USA, January 1996.

Daniel Gomes and Mrio J. Silva. A characterization of the porsgueb. InProceedings of
3rd ECDL Workshop on Web Archivégondheim, Norway, August 2003.

Bernardo A. Huberman and Lada A. Adamic. Evolutionary dynamiche World Wide Web.
Condensed Mattedanuary 1999. (paper 9901071).

Taher H. Haveliwala. Topic-sensitive pagerank.Plnceedings of the Eleventh World Wide
Web Conferenggages 517-526, Honolulu, Hawaii, USA, May 2002. ACM Press.

Monika Henzinger. Hyperlink analysis for the wdEEE Internet Computing5(1):45-50,
2001.

Monika R. Henzinger, Allan Heydon, Michael Mitzenmacherdavarc Najork. Measuring
index quality using random walks on the WeBomputer Networks31(11-16):1291-1303,
1999.

Monika Henzinger, Allan Heydon, Michael Mitzenmacher, a¥drc Najork. On near—
uniform url sampling. InProceedings of the Ninth Conference on World Wide ,Vigelges
295-308, Amsterdam, Netherlands, May 2000. Elsevier Science.

35

[HM98] Susan Haigh and Janette Megarity. Measuring web site usaggfilecanalysis. Network
Notes (57), 1998.

[HN99] Allan Heydon and Marc Najork. Mercator: A scalable, extensioéd crawler. World Wide
Web Conference(4):219-229, April 1999.

[HPPL98] Bernardo A. Huberman, Peter L. T. Pirolli, James E. Pitkow, Rajan M. Lukose. Strong
regularities in world wide web surfingcience280(5360):95-97, April 1998.

[htd04] HT://Dig. http://www.htdig.org/, 2004. GPL software.
[KamO03] Poul-Henning Kamp. OpenBSD CTM. http://www.openbsd.org/ctm.htn®320

[Kle99] Jon M. Kleinberg. Authoritative sources in a hyperlinked enwinent. Journal of the ACM
46(5):604-632, 1999.

[Koe04] Wallace Koehler. A longitudinal study of Web pages continuetbresideration of document
persistencelnformation Researcl9(2):(paper 174), January 2004.

[Kos93] Martijn Koster. Guidelines for robots writers. http://www.robotstg/aic/guidelines.html,
1993.

[Kos95] Martijn Koster. Robots in the web: threat or treaE@nneXions9(4), April 1995.

[Kos96] Martijn Koster. A standard for robot exclusion. http://www.rolxtterg/wc/exclusion.html,
1996.

[KRRT00] R.Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. TopimtsE. Upfal. Stochastic
models for the web graph. IRroceedings of the 41st Annual Symposium on Foundations of
Computer Science (FOCS)ages 57-65. IEEE CS Press, 2000.

[LBLO1] Mark Levene, Jose Borges, and George Loizou. Zipf's famweb surfers.Knowledge and
Information Systems$(1):120-129, 2001.

[LGOO] Steve Lawrence and C. Lee Giles. Accessibility of information onwiieb. Intelligence
11(1):32-39, 2000.

[LH98] Rajan M. Lukose and Bernardo A. Huberman. Surfing as bog#on. In Proceedings of the
first international conference on Information and computation econqipagges 45-51. ACM
Press, 1998.

[Li98] Yanhong Li. Toward a qualitative search engin&EE Internet Computingpages 24 — 29,
July 1998.

36

[LWP+01]

[LZY04]

[MB9S]

[MBO3]

[McB94]

[McLO2]

[Mil04]

[NCO04]

[NWO1]

[Pat04]

[PBMWOS]

[PFL*02]

Lipyeow Lim, Min Wang, Sriram Padmanabhan, Jeffrey Scott Vitted, Ramesh Agarwal.
Characterizing Web document change. Piroceedings of the Second International Confer-
ence on Advances in Web-Age Information Managememtime 2118 ofLecture Notes in
Computer Scienggages 133-144, London, UK, July 2001. Springer-Verlag.

Jiming Liu, Shiwu Zhang, and Jie Yang. Characterizing web asagularities with informa-
tion foraging agentslEEE Transactions on Knowledge and Data Engineeribg(5):566 —
584, 2004.

Robert Miller and Krishna Bharat. Sphinx: A framework for atieg personal, site-specific
web crawlers. IProceedings of the seventh conference on World Wide Brfigbane, Aus-
tralia, April 1998.

John Markwell and David W. Brooks. Link-rot limits the usefulsed Web-based educational
materials in biochemistry and molecular biolo@iochem. Mol. Biol. Edu¢31:69-72, 2003.

Oliver A. McBryan. GENVL and WWWW: Tools for taming the welm Proceedings of the
first World Wide Web Conferenc8eneva, Switzerland, May 1994.

Gregory Louis McLearn. Autonomous cooperating web crasyl2002.

Rob Miller. Websphinx, a personal, customizable web crawler. httpaiw
2.cs.cmu.edu/ rem/websphinx, 2004. Apache-style licensed, operesaftaare.

Alexandros Ntoulas, Junghoo Cho, and Christopher Olstonat¥hew on the web?: the
evolution of the web from a search engine perspectivérateedings of the 13th conference
on World Wide Wefpages 1 — 12, New York, NY, USA, May 2004. ACM Press.

Marc Najork and Janet L. Wiener. Breadth-first crawling ysekdgh-quality pages. IRro-
ceedings of the Tenth Conference on World Wide, etpes 114-118, Hong Kong, May 2001.
Elsevier Science.

Anna Patterson. Why writing your own search engine is ha@M Queuepages 49 — 53,
April 2004.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Teriyogtad. The Pagerank citation
algorithm: bringing order to the web. Proceedings of the seventh conference on World Wide
Weh Brisbane, Australia, April 1998.

David M. Pennock, Gary W. Flake, Steve Lawrence, Eric J. G)arat C. Lee Giles. Winners
don’ttake all: Characterizing the competition for links on the weroceedings of the National
Academy of Sciencgd9(8):5207-5211, April 2002.

37

[Pin94]

[POAO03]

[RAW*02]

[RMO02]

[RRDB02]

[SB88]

[Spi03]

[SS02]

[SS04]

[TG97]

[TKO2]

[TomO03]

[TPO3]

[TTO4]

Brian Pinkerton. Finding what people want: Experiences with tee@vawler. InProceed-
ings of the first World Wide Web ConferenGeneva, Switzerland, May 1994.

V. Plachouras, I. Ounis, and G. Amati. A Utility-oriented Hyperlikalysis Model for the
Web. InProceedings of the First Latin Web Conferenpages 123-131. IEEE Press, 2003.

Andreas Rauber, Andreas Aschenbrenner, Oliver WitvoeteRdid. Bruckner, and Max
Kaiser. Uncovering information hidden in web archivBsLib Magazing 8(12), 2002.

Knut Magne Risvik and Rolf Michelsen. Search engines and dyetamics.Computer Net-
works 39(3), June 2002.

J.F. Reschke, S. Reddy, J. Davis, and A. Babich. DASAV Eearching and locating protocol.
http://www.webdav.org/dasl/, 2002.

Gerard Salton and Christopher Buckley. Term-weighting agbesin automatic text re-
trieval. Information Processing and Management: an International JoyrB4(5):513-523,
1988.

Diomidis Spinellis. The decay and failures of web referen@snmunications of the ACM
46(1):71-77, January 2003.

Vladislav Shkapenyuk and Torsten Suel. Design and implementdteohigh-performance
distributed web crawler. IProceedings of the 18th International Conference on Data Engi-
neering (ICDE) pages 357 — 368, San Jose, California, February 2002. IEEE €3S.Pr

Danny Sullivan and Chris Sherman. Search Engine Watchtseip://www.searchengine-
watch.com/reports/, 2004.

Linda Tauscher and Saul Greenberg. Revisitation patternsrild wide web navigation. In
Proceedings of the Conference on Human Factors in Computing Systeh®s C1997.

Pang-Ning Tan and Vipin Kumar. Discovery of web robots sesbi@sed on their navigational
patterns.Data Mining and Knowledge discover§(1):9-35, 2002.

John A. Tomlin. A new paradigm for ranking pages on the worlcewieb. InProceedings of
the Twelfth Conference on World Wide Wphges 350-355, Budapest, Hungary, May 2003.
ACM Press.

Andrew Tridgell and Martin Pool. RSYNC: fast incremental file nster.
http://samba.anu.edu.au/rsync/, 2003.

Doru Tanasa and Brigitte Trousse. Advanced data prepsoaes$or intersites Web usage
mining. IEEE Intelligent System49(2):59-65, 2004.

38

[Tur04]

[VAMG*00]

[VHGH+97]

[web04]

[YL96]

[ZYDO02]

Stephen Turner. Analog: WWW log file analysis. http://www.anabig2004.

Eveline A. Veloso, Edleno de Moura, P. Golgher, A. da Silva, R. Almeil. Laender,
B. Ribeiro-Neto, and Nivio Ziviani. Um retrato da web brasileira. Aroceedings of Sim-
posio Brasileiro de Computaca@uritiba, Brasil, July 2000.

Arthur van Hoff, John Giannandrea, Mark Hapner, Steve Caaredt Milo Medin. DRP -
distribution and replication protocol. http://www.w3.org/TR/NOTE-drp, 1997.

WebTrends corporation. http://www.webtrends.com/, 2004.

Budi Yuwono and Dik Lun Lee. Search and ranking algorithmslézating resources on the
world wide web. InProceedings of the twelfth International Conference on Data Engineering
(ICDE), pages 164-171, Washington, DC, USA, February 1996. IEEE €&Pr

Demetrios Zeinalipour-Yazti and Marios D. Dikaiakos. Desigd anplementation of a dis-
tributed crawler and filtering processor. Pnmoceedings of the fifth Next Generation Informa-
tion Technologies and Systems (NGIM®Jume 2382 otf_ecture Notes in Computer Science
pages 58-74, Caesarea, Israel, June 2002. Springer.

39

