
Chapter 2

Related Work

In this chapter we review selected publications related to the topics covered inthis thesis.

We start in section 2.1 with a summary of several studies about Web characterization that include results

relevant for Web crawling. We continue in section 2.2 with an outline on how search engines index pages

from the Web. Section 2.3 provides an overview of publications on link analysis in general, in section 2.4

we review specific issues of Web crawling and their solutions, and in section2.5 we cover the architecture

of existing Web crawlers.

2.1 Web characterization

2.1.1 Methods for sampling

One of the main difficulties involved in any attempt of Web characterization is howto obtain a good sam-

ple. As there are very few important pages lost in a vast amount of unimportant pages (according to any

metric: Pagerank, reference count, page size, etc.), just taking a URL at random is not enough. For many

applications, pages with little or no meaningful content should be excluded, so it is important to estimate the

importance of each page [HHMN00], even if we have only partial information.

We distinguish two main methods for sampling Web pages:

Vertical sampling involves gathering pages restricted by domain names. As the domain name system in-

duces a hierarchical structure, vertical sampling can be done at different levels of the structure. When

vertical sampling is done at top-level it can select entire countries such as.cl, .it, .au, which are

expected to be cohesive in terms of language, topics, history, or it can select general top-level domains

such as.edu or .com, which are less coherent, except for the.gov domain. When vertical sampling

is done at second level, it will choose a set of pages produced by members of the same organization

(e.g.stanford.edu).

1

Countries that have been the subject of Web characterization studies include Brazil [VdMG+00], Chile

[BYP03], Portugal [GS03], Spain [BY03], Hungary [BCF+03] and Austria [RAW+02].

Horizontal sampling involves a criteria of selection that is not based on domain names. In this case, there

are two approaches for gathering data: using a log of the transactions in the proxy of a large organiza-

tion or ISP, or using a Web crawler. There are advantages and disadvantages for each method: when

monitoring a proxy it is easy to find popular pages, but the revisit period is impossible to control, as it

depends on users; using a crawler the popularity of pages has to be estimated but the revisit period can

be fine-tuned.

In horizontal sampling, a “random walk” can be used to obtain a set in whichpages are roughly

visited with probability proportional to their Pagerank values, and then obtaina sample taken from

this set with probability inversely proportional to Pagerank, so the sample is expected to be unbiased

[HHMN99, HHMN00].

2.1.2 Web dynamics

There are two areas of Web dynamics: studying the Web growth and studying the document updates [RM02];

we will focus on the study of document updates, i.e.: the change of the Web interms of creations, updates

and deletions. For a model of the growth of the number of pages per Web site, see the study by Huberman

and Adamic [HA99].

When studying document updates, the data is obtained by repeated accessto a large set of pages during

a period of time.

For each pagep and each visit, the following information is available:

• The access time-stamp of the page: visitp.

• The last-modified time-stamp (given by most Web servers; about 80%-90% of the requests in practice):

modifiedp.

• The text of the page, which can be compared to an older copy to detect changes, especially if modifiedp

is not provided.

The following information can be estimated if the re-visiting period is short:

• The time at which the page first appeared: createdp.

• The time at which the page was no longer reachable: deletedp. Koehler [Koe04] noted that pages

that are unreachable may become reachable in the future, and many pagesexhibit this behavior, so he

prefers the term “comatose page” instead of “dead page”.

2

In all cases, the results are only an estimation of the actual values becausethey are obtained bypolling

for events (changes), not by the resourcenotifying events, so it is possible that between two accesses a Web

page changes more than once.

Estimating freshness and age

The probability that a copy ofp is up-to-date at timet, up(t) decreases with time if the page is not re-visited.

Brewington and Cybenko [BCS+00] considered that if changes to a given page occur at independentin-

tervals, i.e., page change is a memory-less process, then this can be modeledas a Poisson process. However,

it is worth noticing that most Web page changes exhibit certain periodicity –because most of the updates

occur during business hours in the relevant time zone for the studied sample– so the estimators that do not

account for this periodicity are more valid on the scales of weeks or months than on smaller scales.

When page changes are modeled as a Poisson process, ift units of time have passed since the last visit,

then:

up(t) = e−λpt (2.1)

The parameterλp characterizes the rate of change of the pagep and can be estimated based on previous

observations, especially if the Web server provides the last modification date of the page whenever it is

visited. This estimation forλp was obtained by Cho and Garcia-Molina [CGM03b]:

λp ≈
(Xp−1)−

Xp

Np log(1−Xp/Np)

SpT
(2.2)

• Np number of visits top.

• Sp time since the first visit top.

• Xp number of times the server has informed that the page has changed.

• Tp total time with no modification, according to the server, summed over all the visits.

If the server does not give the last-modified time, we can still check for modifications by comparing the

downloaded copies at two different times, soXp now will be the number of times a modification is detected.

The estimation for the parameter in this case is:

λp ≈
−Np log(1−Xp/Np)

Sp
(2.3)

The above equation requiresXp < Np, so if the page changes every time it is visited, we cannot estimate

its change frequency.

3

Characterization of Web page changes

There are different time-related metrics for a Web page, the most used are:

• Age: visitp−modifiedp.

• Lifespan: deletedp−createdp.

• Number of changes during the lifespan: changesp.

• Average change interval: lifespanp/changesp.

Once an estimation of the above values has been obtained for Web pages in the sample, useful metrics

for the entire sample are calculated, for instance:

• Distribution of change intervals.

• Average lifespan of pages.

• Median lifespan of pages, i.e.: time it takes for 50% of the pages to change. This is also called the

“half-life” of the Web –a term borrowed from physics.

Selected results about Web page changes are summarized in Table 2.1.

The methods for the study of these parameters vary widely. Some researchers focus on the lifespan

of pages, as they are concerned with the “availability” of Web content. Thisis an important subject from

the point of view of researchers, as it is being common to cite on-line publications as sources, and they are

expected to be somewhat “permanent” (but they are not).

Other publications focus on the rate of change of pages, which is more directly related to Web crawling,

as knowing the rate of change can help to produce a good re-visiting order.

2.1.3 Link structure

About computer networks, Barabási [Bar01] noted: “While entirely of human design, the emerging network

appears to have more in common with a cell or an ecological system than with a Swiss watch.”

The graph representing the connections between Web pages has a scale-free topology and a macroscopic

structure that are different from the properties of a random graph. AWeb crawler designer must be aware of

these special characteristics.

4

Table 2.1: Summary of selected results about Web page changes, orderedby increasing sam-

ple size. In general, methods for Web characterization studies vary widely and there are few

comparable results.

Reference Sample Observations

[Koe04]
360 random pages, Half-life≈ 2 years

long-term study 33% of pages lasted for 6 years

[MB03] 500 scholarly publica-

tions

Half-life ≈ 4.5 years

[GS96]
2,500 pages, Average lifespan≈ 50 days

university Website Median age≈ 150 days

[Spi03] 4,200 scholarly publica-

tions

Half-life ≈ 4 years

[Cho00]

720,000 pages, Average lifespan≈ 60 – 240 days

popular sites 40% of pages in.com change every day

50% of pages in.edu and.gov remain the same for 4

months

[DFKM97]
950,000 pages Average age between 10 days and 10 months

Highly-linked pages change more frequently

[NCO04]

4 million pages, 8% of new pages every week

popular sites 62% of the new pages have novel content

25% of new links every week

80% of page changes are minor

[FMNW03]

150 million pages, 65% of pages don’t change in a 10-week period

30% of pages have only minor changes

Large variations of availability across domains

[BCS+00] 800 million pages Average lifespan≈ 140 days

5

Scale-free networks

Scale-free networks, as opposed to random networks, are characterized by an uneven distribution of links.

These networks have been the subject of a series of studies by Barabási [Bar02], and are characterized as

networks in which the distribution of the number of linksΓ(p) to a pagep follows a power law:

Pr(Γ(p) = k) ∝ k−θ (2.4)

A scale-free network is characterized by a few highly-linked nodes thatact as “hubs” connecting several

nodes to the network. The difference between a random network and a scale-free network is depicted in

Figure 2.1.

Figure 2.1: Examples of a random network and a scale-free network. Each graph has 32 nodes

and 32 links. Note that both were chosen to be connected and tolook nice on the plane, so they

are not entirely random.

Scale-free networks arise in a wide variety of contexts, and there is a substantial amount of literature

about them, so we will cite in the following just a few selected publications.

Some examples of scale-free network arising outside the realm of computer networks include:

• Acquaintances, friends and social popularity in human interactions. The Economist commented “in

other words, some people have all the luck, while others have none.” [Eco02].

• Sexual partners in humans, which is highly relevant for the control of sexually-transmitted diseases.

• Power grid designs, as most of them are designed in such a way that if a few key nodes fail, the entire

system goes down.

• Collaboration of movie actors in films.

• Citations in scientific publications.

6

• Proteins interaction.

• Cellular metabolism.

Examples of scale-free networks related to the Internet are:

• Geographic, physical connectivity of Internet nodes.

• Number of links on Web pages.

• User participation in interest groups and communities.

• E-mail exchanges.

These scale-free networks do not arise by chance alone. Erdõs and Ŕenyi [ER60] studied a model of

growth for graphs in which, at each step, two nodes are chosen uniformly at random and a link is inserted

between them. The properties of these random graphs are not consistent with the properties observed in

scale-free networks, and therefore a model for this growth process isneeded.

The connectivity distribution over the entire Web is very close to a power law,because there are a

few Web sites with huge numbers of links, which benefit from a good placement in search engines and an

established presence on the Web. This has been called the “winners take all” phenomenon.

Barab́asi and Albert [BA99] propose a “rich get richer” generative model inwhich each new Web page

creates link to existent Web pages with a probability distribution with is not uniform, but proportional to

the current in-degree of Web pages. According to this process, a page with many in-links will attract more

in-links that a regular page. This generates a power-law but the resultinggraph differs from the actual Web

graph in other properties such as the presence of small tightly connected communities.

A different generative model is the “copy” model studied by Kumaret al. [KRR+00], in which new

nodes choose an existent node at random and copy a fraction of the links of the existent node. This also

generates a power law.

However, if we look at communities of interests in a specific topic, discarding the major hubs of the

Web, the distribution of links is no longer a power law but resembles more a Gaussian distribution, as ob-

served by Pennocket al. [PFL+02] in the communities of the home pages of universities, public companies,

newspapers and scientists. Based on these observations, the authors propose a generative model that mixes

preferential attachment with a baseline probability of gaining a link.

Macroscopic structure

The most complete study of the Web structure [BKM+00] focuses on the connectivity of a subset of 200

million Web pages from the Altavista search engine. This subset is a connectedgraph, if we ignore the

direction of the links.

7

The study starts by identifying in the Web graph a single large strongly connected component (i.e.: all

of the pages in this component can reach one another along directed links). They call the larger strongly

connected component “MAIN”. Starting in MAIN, if we follow links forwardwe find OUT, and if we follow

links backwards we find IN. All of the Web pages with are part of the graph but do not fit neither MAIN, IN,

nor OUT are part of a fourth component called TENTACLES.

A page can describe several documents and one document can be stored in several pages, so we decided

to study the structure of how Web sites were connected, as Web sites are closer to real logical units. Not

surprisingly, we found in [BYC01] that the structure in the.cl (Chile) domain at the Web site level was

similar to the global Web – another example of the autosimilarity of the Web – and hence we use the same

notation of [BKM+00]. The components are defined as follows:

(a) MAIN, sites that are in the strong connected component of the connectivity graph of sites (that is, we

can navigate from any site to any other site in the same component);

(b) IN, sites that can reach MAIN but cannot be reached from MAIN;

(c) OUT, sites that can be reached from MAIN, but there is no path to go back to MAIN; and

(d) other sites that can be reached from IN or can only reach OUT (TENTACLES), sites in paths between

IN and OUT (TUNNEL), and unconnected sites (ISLANDS).

Figure 2.2 shows all these components.

Figure 2.2: Macroscopic structure of the Web. The MAIN component is the biggest strongly

connected component in the graph. The IN and OUT components can reach and be reached

from the MAIN components, and there are other minor structures. There is a significant portion

of Web sites which are disconnected from the Web graph in the ISLAND portion.

8

2.1.4 User sessions on the Web

User sessions on the Web are usually characterized through models of random surfers, such as the ones

studied by Diligentiet al. [DGM04]. As we have seen, these models have been used for page ranking with

the Pagerank algorithm [PBMW98], or to sample the Web [HHMN00].

The most used source for data about the browsing activities of users are the access log files of Web

servers, and there are several log file analysis software available: [Tur04, web04, Bou04, Bar04]. A common

goal for researchers in this area is to try to infer rules in user browsing patterns, such as “40% users that

visit pageA also visit pageB” to assist in Web site re-design. Log file analysis has a number of restrictions

arising from the implementation of HTTP, especially caching and proxies, as noted by Haigh and Megarity

[HM98]. Cachingimplies that re-visiting a page is not always recorded, and re-visiting pagesis a common

action, and can account for more than 50% of the activity of users, whenmeasuring it directly in the browser

[TG97]. Proxiesimplies that several users can be accessing a Web site from the same IP address.

To process log file data, careful data preparation must be done [CMS99, BS00, TT04]. An important

aspect of this data preparation is to separate automated sessions from user sessions. Robot session charac-

terization was studied by Tan and Kumar [TK02].

The visits to a Web site have been modeled as a sequence of decisions by Hubermanet al. [HPPL98,

AH00]; they obtain a model for the number of clicks that follows a Zipf’s law.Leveneet al. [LBL01]

proposed to use an absorbing state to represent the user leaving the Website, and analyzed the lengths of

user sessions when the probability of following a link increases with sessionlength. Lukose and Huberman

[LH98] also present an analysis of the Markov chain model of a user clicking through a Web site, and focus

in designing an algorithm for automatic browsing, which is also the topic of a recent work by Liuet al.

[LZY04].

2.2 Indexing and querying Web pages

The Web search process has two main parts: off-line and on-line.

The off-line part is executed periodically by the search engine, and consists in downloading a sub-set of

the Web to build a collection of pages, which is then transformed into a searchable index.

The on-line part is executed every time a user query is executed, and uses the index to select some

candidate documents that are sorted according to an estimation on how relevant they are for the user’s need.

This process is depicted in Figure 2.3.

Web pages come in many different formats such as plain text, HTML pages, PDF documents, and other

proprietary formats. The first stage for indexing Web pages is to extracta standard logical view from the

documents. The most used logical view for documents in search engines is the “bag of words” model, in

9

Figure 2.3: A Web search engine periodically downloads and indexes a sub-set of Web pages

(off-line operation). This index is used for searching and ranking in response to user queries

(on-line operation). The search engine is an interface between users and the World Wide Web.

which each document is seen only as an unordered set of words. In modern Web search engines, this view

is extended with extra information concerning word frequencies and text formatting attributes, as well as

meta-information about Web pages including embedded descriptions and explicit keywords in the HTML

markup.

There are several text normalization operations [?] that are executed for extracting keywords, the most

used ones are: tokenization, stopword removal and stemming .

Tokenization involves dividing the stream of text into words. While in some languages like English this

is very straighforward and involves just splitting the text using spaces andpunctuation, in other languages

like Chinese finding words can be very difficult.

Stopwords are words that carry little semantic information, usually functionalwords that appear in a

large fraction of the documents and therefore have little discriminating power for asserting relevance. In

information retrieval stopwords are usually discarded also for efficiency reasons, as storing stopwords in an

index takes considerable space because of their high frequency.

Stemming extracts the morphological root of every word. In global searchengines, the first problem

with stemming is that it is language dependent, and while an English rule-based stemming works well, in

some cases like Spanish, a dictionary-based stemmer has to be used, while in other languages as German

and Arabic stemming is quite difficult.

Other, more complex operations such as synonim translation, detecting multiword expressions, phrase

identification, named entity recognition, word sense disambiguation, etc. are used in some application do-

mains. However, some of these operations can be computationally expensive and if they have large error

rates, then they can be useless and even harm retrieval precision.

10

2.2.1 Inverted index

An inverted index is composed of two parts: a vocabulary and a list of occurrences. The vocabulary is a sorted

list of all the keywords, and for each term in the vocabulary, a list of all the “places” in which the keyword

appears in the collection is kept. Figure 2.4 shows a small inverted index, considering all words including

stopwords. When querying, the lists are extracted from the inverted indexand then merged. Queries are very

fast because usually hashing in memory is used for the vocabulary, and the lists of occurrences are pre-sorted

by some global relevance criteria.

Figure 2.4: A sample inverted index with three documents. All tokens areconsidered for

the purpose of this example, and the only text normalizationoperation is convert all tokens to

lowercase. Searches involving multiple keywords are solved using set operations.

The granularity of the choice of the items in the list of occurrences determinesthe size of the index, and

a small size can be obtained by storing only the document identifiers of the corresponding documents. If the

search engine also stores the position where the term appears on each page the index is larger, but can be

used for solving more complex queries such as queries for exact phrases, or proximity queries.

While the vocabulary grows sub-linearly with the collection size, the list of occurrences can be very

large. The complete inverted index can occupy from 10% to 20% of the space occupied by the actual

collection. An inverted index does not fit in main memory for a Web collection, soseveral partial indices are

built. Each partial index represents only a subset of the collection and arelater merged into the full inverted

index.

In Figure 2.5 the main stages of the indexation process are depicted. Duringparsing, links are extracted

to build a Web graph, and they can be analyzed later to generate link-basedscores that can be stored along

withe the rest of the metadata.

2.2.2 Distributing query load

Query response time in today’s search engines requires to be very fast,and should be done in a parallel

way involving several machines. For parallelization, the inverted index is usually distributed among several

11

Figure 2.5: Indexing for Web search. (1) Pages are parsed and links and extracted. (2) Partial

indices are written on disk when main memory is exhausted. (3) Indices are merged into a

complete text index. (4) Off-line link analysis can be used to calculate static link-based scores.

physical computers. To partition the inverted index, two techniques are used: global inverted file and local

inverted file [?].

When using a global inverted file, the vocabulary is divided into several parts containing roughly the

same amount of occurrences. Each computer is assigned a part of the vocabulary and all of its occurrences.

Whenever a query is received, the query is sent to the computers holdingthe query terms, and the results are

merged afterwards. Hence, load balancing is not easy.

When using a local inverted file, the document identifiers are divided, buteach computer gets the full

vocabulary. That is, step 3 in figure 2.5 is ommitted. A query is then broadcasted to all computers, obtaining

good load balance. This is the architecture used in main search engines today, as building and maintaining a

global index is hard.

Query processing involves a central “broker” that is assigned the taskof distributing incoming queries

and merging the results. As the results are usually shown in groups of 10 or20 documents per page, the

broker does not need to request or merge full lists, only the top most results from each partial list.

Search engines exploit the fact that users seldom go past the first or second page of results. Search

engines provide approximate result counts because they never perform a full merge of the partial result lists,

12

so the total number of documents in the intersection can only be estimated. For thisreason, when a user asks

for the second or third page of results for a query, it is common that the fullquery is executed again.

2.2.3 Text-based ranking

The vector space model [?] is the standard technique for ranking documents according to a query. Under

this model, both a document and a query are seen as a pair of vectors in a space with as many dimensions

as terms as the vocabulary. In a space defined in this way, the similarity of a query to a document is given

by a formula that transforms each vector using certain weights and then calculates the cosine of the angle

between the two weighted vectors:

sim(q,d) =
∑t wt,q×wt,d

√

∑t w2
t,q×

√

∑t w2
t,d

In pure text-based information retrieval systems, documents are shown to the users in decreasing order

using this similarity measure.

A weighting scheme uses statistical properties from the text and the query to give certain words more

importance when doing the similarity calculation. The most used scheme is the TF-IDF weighting scheme

[SB88], that uses the frequency of the terms in both queries and documents to compute the similarity.

TF stands forterm frequency, and the idea is that a that if a term appears several times in a document

it is better as for describing the contents of that document. The TF is usually normalized with respect to

document length, that is, the parameter used is the frequency of termt divided by the frequency of the most

frequent term in documentd:

t f t,d =
f reqt,d

max̀ f req̀ ,d

IDF stands forinverse document frequency and reflects how frequent a term is in the whole collection.

The rationale is that a term that appears in a few documents gives more information that a term that appears

in many documents. IfN is the number of documents andnt if the number of documents containing the

query termt, thenid f t = log N
nt

.

Using these measures, the weight of each term in given by:

wt,q =

(

1
2

+
1
2

t f t,q

)

id f t , wt,d = t f t,d

The 1/2 factor is added to avoid a query term having 0 weight. Several alternative weighting schemes

have been proposed, but this weighting scheme is one of the most used andgives good results in practice.

13

2.3 Connectivity-based ranking

Web links provide a source of valuable information. In a context in which thenumber of pages is very large,

and there are no trusted measures for asserting the quality of pages, Weblinks can be used as a collective,

“emerging” measure of page quality.

It is known that Web pages sharing a link are more likely to be topically related that unconnected Web

pages [Dav00]. The key assumption of connectivity-based ranking goes one step further, and asserts that a

hyperlink from a pagep′ to a pagep, means, in a certain way, that the content of pagep is endorsed by the

author of pagep′.

Several algorithms for connectivity-based ranking based on this assumption are the subject of a survey

by Henzinger [Hen01], and can be partitioned into:

• Query-independent ranking, that assign a fixed score to each page in the collection.

• Query-dependent ranking, or topic-sensitive ranking, that assign a score to each page in the collection

in the context of a specific query.

2.3.1 Query-independent ranking

The first connectivity based query-independent ranking method was called Hyperlink Vector Voting (HVV)

and was introduced by Li [Li98]. The HVV method uses the keywords appearing inside the links to a Web

page to confer it a higher score on those keywords. Only the count of keyword-link pairs is used, so this

ranking function is relatively easy to manipulate to get an undeserved ranking.

The Pagerank algorithm, introduced by Pageet al. [PBMW98], is currently an important part of the

ranking function used by the Google search engine [goo04]. The definition of Pagerank is recursive, stating

in simple terms that “a page with high Pagerank is a page referenced by many pages with high Pagerank”.

Pagerank can be seen as a recursive HVV method.

To calculate the Pagerank, each page on the Web is modeled as a state in a system, and each hyperlink

as a transition between two states. The Pagerank value of a page is the probability of being in a given page

when this system reaches its stationary state.

A good metaphor for understanding this is to imagine a “random surfer”, a person who visits pages at

random, and upon arrival to each page, chooses an outgoing link uniformly at random from the links in that

page. The Pagerank of a page is the fraction of time the random surfer spends at each page.

This simple system can be modeled by the following equation of a “simplified Pagerank”. In this and

the following equations,p is a Web page,Γ−(p) is the set of pages pointing top, andΓ+(p) is the set of

pagesp points to.

14

Pagerank′(p) = ∑
x∈Γ−(p)

Pagerank′(x)
|Γ+(x)|

(2.5)

However, actual Web graphs include many pages with no out-links, which act as “rank sinks” as they

accumulate rank but never distribute it to other pages. In stationary state, only they would have Pagerank

> 0. These pages can be removed from the system and their rank computed later. Also, we would like pages

not to accumulate ranking by using indirect self-references –self-linksare easy to remove– not passing all of

their score to other pages. For these reasons, most of the implementations ofPagerank add “random jumps”

to each page. These random jumps are hyperlinks from every page to allpages in the collection, including

itself, which provide a minimal rank to all the pages as well as a damping effectfor self-reference schemes.

In terms of the random surfer model, we can state that when choosing the next step, the random surfer

either chooses a page at random from the collection with probabilityε, or chooses to follow a link from the

current page with probability 1− ε. This is the model used for calculating Pagerank in practice, and it is

described by the following equation:

Pagerank(p) =
ε
N

+(1− ε) ∑
x∈Γ−(p)

Pagerank(x)
|Γ+(x)|

(2.6)

N is the number of pages in the collection, and the parameterε is typically between 0.1 and 0.2, based

on empirical evidence. Pagerank is a global, static measure of quality of a Web page, very efficient in terms

of computation time, as it only has to be calculated once at indexing time and is later used repeatedly at

query time.

Note that Pagerank can also be manipulated and in fact there are thousands or millions of Web pages

created specifically for the objective of deceiving the ranking function.Eironet al. [EMT04] found that:

“Among the top 20 URLs in our 100 million page Pagerank calculation using teleportation to

random pages, 11 were pornographic, and they appear to have all been achieved using the same

form of link manipulation. The specific technique that was used was to createmany URLs

that all link to a single page, thereby accumulating the Pagerank that every page receives from

random teleportation, and concentrating it into a single page of interest.”

Another paradigm for ranking pages based on a Markov chain is an absorbing model introduced by

Amati et al. [AOV03, POA03]. In this model, the original Web graph is transformed adding, for each node,

a “clone node” with no out-links. Each clone nodep′ is only linked from one node in the original graphp.

When this system reaches stationary state, only the clone nodes have probabilities greater than zero. The

probability of the clone nodep′ is interpreted as the score of the original nodep. This model performs better

than Pagerank for some information retrieval tasks.

15

A different paradigm for static ranking on the Web is the network flow modelintroduced by Tomlin

[Tom03]. For ranking pages, a (sub)graph of the Web is considered as carrying a finite amount of fluid,

and edges between nodes are pipes for this fluid. Using an entropy maximization method, two measures

are obtained: a “TrafficRank” that is an estimation of the maximum amount of flow through a node in this

network model, and a “page temperature”, which is a measure of the importance of a Web page, obtained by

solving the dual of this optimization problem. Both measures can be used for ranking Web pages, and both

are independent of Pagerank.

The models presented in this section summarize each page on the Web with a singlenumber, or a pair

of numbers, but as the creators of Pagerank note, “the importance of a Web page is an inherently subjective

matter that depends on readers interests, knowledge and attitudes” [PBMW98]; this is why query-dependent

ranking is introduced to create ranking functions that are sensitive to user’s needs.

2.3.2 Query-dependent ranking

In query-dependent ranking, the starting point is a “neighborhood graph”: a set of pages that are expected to

be relevant to the given query. Carriere and Kazman [CK97] proposeto build this graph by starting with a

set of pages containing the query terms; this set can be the list of results given by a full-text search engine.

This root setis augmented by its “neighborhood” that comprises all (or a large sample) ofthe pages directly

pointing to, or directly pointed by, pages in the root set. The construction procedure of the neighborhoor set

is shown in Algorithm 1.

Figure 2.6 depicts the process of creation of the neighborhood set. The idea of limiting the number of

pages added to the neighborhood set by following back links was not part of the original proposal, but was

introduced later [BH98].

Figure 2.6: Expansion of the root set witht = 5 andd = 2. t is the number of pages in the root

set, andd is the maximum number of back-links to include in the neighborhood set.

16

Algorithm 1 Creation of the neighborhood setSσ of queryσ
Require: σ query

Require: t > 0, size of root set.

Require: d > 0 number of back-links to include per page.

1: Rσ ← top t results using a search engine.

2: Sσ ← /0
3: for all p∈ Rσ do

4: Let Γ+(p) denote all pagesp points to

5: Let Γ−(p) denote all pages pointed byp

6: Sσ ← Sσ ∪Γ+(p)

7: if |Γ−(p)| ≤ d then

8: Sσ ← Sσ ∪Γ−(p)

9: else

10: Sσ ← Sσ∪ an arbitrary set ofd pages inΓ−(p)

11: end if

12: end for

13: Sσ is the neighborhood set of queryσ

It is customary that when considering links in the neighborhood set, only links in different Web sites are

included, as links between pages in the same Web site are usually created by the same authors as the pages

themselves, and do not reflect the relative importance of a page for the general community.

The most-cited algorithm, presented by Yuwono and Lee [YL96], is the simplest form of connectivity-

based query-dependent ranking: after the neighborhood set has been built, each pagep in it is assigned a

score that is the sum of the number of query terms appearing in the pages pointing to p. This algorithm

performed poorly when compared with pure content-based analysis, andits authors concluded that links by

themselves are not a reliable indicator of semantic relationship between Web pages.

A more complex idea is the HITS algorithm presented by Kleinberg [Kle99] thatis based on considering

that relevant pages can be either “authority pages” or “hub pages”. An authority page is expected to have

relevant content for a subject, and a hub page is expected to have many links to authority pages.

The HITS algorithm produces two scores for each page, called “authority score” and “hub score”. These

two scores have a mutually-reinforcing relationship: a page with high authority score is pointed to by many

pages with a high hub score, and a page with a high hub score points to many pages with a high authority

score, as shown in Figure 2.7.

An iterative version of this algorithm is shown in Algorithm 2; in this version, thenumber of iterations

is fixed, but the algorithm can be adapted to stop based on the convergence of the sequence of iterations.

The HITS algorithm suffers from several drawbacks in its pure form. Some of them were noted and

17

Figure 2.7: Hubs and authorities in a small graph. Node 4 is the best hub page, as it points to

many authorities, and nodesb andg are the best authority pages.

Algorithm 2 Hub and authority score for each page inSσ
Require: Sσ neighborhood set of queryσ
Require: k number of iterations

1: n← |Sσ|

2: Let z denote the vector(1,1,1, ...1) ∈ Rn

3: H0 ← z

4: A0 ← z

5: for j = 1 tok do

6: for i = 1 ton do

7: H j [i] ← ∑x∈Γ+(i) A j−1[x] {Γ+(i) are pagesi points to}

8: A j [i] ← ∑x∈Γ−(i) H j [x] {Γ−(i) are pages pointing toi}

9: end for

10: NormalizeH j andA j so their components sum 1

11: end for

12: Hk is the vector of hub scores

13: Ak is the vector of authority scores

solved by Bharat and Henzinger [BH98]:

(a) Not all the documents in the neighborhood set are about the original topic (“topic drifting”).

(b) There are nepotistic, mutually-reinforcing relationships between hosts.

(c) There are many automatically generated links.

Problem (a) is the most important, as while expanding the root set, it is common to include popular pages

that are highly-linked, but unrelated to the query topic. The solution is to useanalysis of the contents of the

documents when executing Algorithm 1, and pruning the neighborhood graph by removing the documents

that are too different from the query. This is done using a threshold forthe standard TF-IDF measure of

similarity [SB88] between documents and queries.

18

Problems (b) and (c) can be avoided using the following heuristic: if there are k edges from documents

on a host to documents in another host, then each edge is given a weight of1/k. This gives each document

the same amount of influence on the final score, regardless of the numberof links in that specific document.

A different variation of the HITS algorithm, designed specifically to avoid “topic drifting”, was pre-

sented by Chakrabartiet al. [CDR+98]. In their approach, for each link, the text near it in the origin page

and the full text of the destination page are compared. If they are similar, thelink is given a high weight, as

it carries information about semantic similarity between the origin and destination pages. As this heuristic

keeps the pages in the neighborhood set more closely related, a more relaxed expansion phase can be done.

The authors propose to follow two levels of links forward and backward from the root set, instead of just

one.

Another approach to query-dependent ranking is topic-sensitive Pagerank, introduced by Haveliwala

[Hav02], in this method, multiple scores for each page are pre-computed atindexing time, using an algorithm

similar to Pagerank. Each score represents the importance of a page for each topic from a set of pre-defined

topics. At query time, the ranking is done using the query to assign weights to the different topic-sensitive

Pagerank scores of each page.

2.4 Web crawling issues

There are two important characteristics of the Web that generate a scenario in which Web crawling is very

difficult: its large volume and its rate of change, as there is a huge amount of pages being added, changed

and removed every day. Also, network speed has improved less than current processing speeds and storage

capacities. The large volume implies that the crawler can only download a fraction of the Web pages within

a given time, so it needs to prioritize its downloads. The high rate of change implies that by the time the

crawler is downloading the last pages from a site, it is very likely that new pages have been added to the site,

or that pages that have already been updated or even deleted.

Crawling the Web, in a certain way, resembles watching the sky in a clear night:what we see reflects

the state of the stars at different times, as the light travels different distances. What a Web crawler gets is not

a “snapshot” of the Web, because it does not represents the Web at any given instant of time [BYRN99]. The

last pages being crawled are probably very accurately represented,but the first pages that were downloaded

have a high probability of have been changed. This idea is depicted in Figure 2.8.

As Edwardset al. note, “Given that the bandwidth for conducting crawls is neither infinite norfree it

is becoming essential to crawl the Web in a not only scalable, but efficient way if some reasonable measure

of quality or freshness is to be maintained.” [EMT01]. A crawler must carefully choose at each step which

pages to visit next.

The behavior of a Web crawler is the outcome of a combination of policies:

19

Figure 2.8: As the crawling process takes time and the Web is very dynamic, the search en-

gine’s view of the Web represents the state of Web pages at different times. This is similar to

watching the sky at night, as the stars we see never existed simultaneously as we see them.

• A selection policythat states which pages to download.

• A re-visit policythat states when to check for changes to the pages.

• A politeness policythat states how to avoid overloading Web sites.

• A parallelization policythat states how to coordinate distributed Web crawlers.

2.4.1 Selection policy

Given the current size of the Web, even large search engines cover only a portion of the publicly available

content; a study by Lawrence and Giles [LG00] showed that no search engine indexes more than 16% of

the Web. As a crawler always downloads just a fraction of the Web pages, it is highly desirable that the

downloaded fraction contains the most relevant pages, and not just a random sample of the Web.

This requires a metric of importance for prioritizing Web pages. The importance of a page is a function

of its intrinsic quality, its popularity in terms of links or visits, and even of its URL (the latter is the case

of vertical search engines restricted to a single top-level domain, or search engines restricted to a fixed

Website). Designing a good selection policy has an added difficulty: it must work with partial information,

as the complete set of Web pages is not known during crawling.

In experiments by Choet al. [CGMP98], a series of importance metrics were tested to download pages

from thestanford.edu domain. They found that ordering pages by Pagerank (calculated overthe partial

set of pages already downloaded) leads to crawling highly-referenced pages first, regardless of the starting

20

URLs, while ordering by pure count of references results in a bias towards locally important pages, and does

not achieve a good global ordering.

In a different study by Najork and Wiener [NW01], several million pagesacross 7 million Web sites

were downloaded using different policies. They discovered that breadth-first crawl is the best strategy to

download pages with good Pagerank early in the crawl, and that the quality of downloaded pages deteriorates

as the crawling process advances. The explanation given by the authors for this result is that “the most

important pages have many links to them from numerous hosts, and those linkswill be found early, regardless

of on which host or page the crawl originates”.

The importance of a page for a crawler can also be expressed as a function of the similarity of a page

to a given query. This is called “focused crawling” and was introduced by Chakrabartiet al. [CvD99]. The

main problem in focused crawling is that in the context of a Web crawler, we would like to be able to predict

the similarity of the text of a given page to the querybeforeactually downloading the page. A possible

predictor is the anchor text of links; this was the approach taken by Pinkerton [Pin94] in a crawler developed

in the early days of the Web. Diligentiet al. [DCL+00] propose to use the complete content of the pages

already visited to infer the similarity between the driving query and the pages that have not been visited yet.

The performance of a focused crawling depends mostly on the richness of links in the specific topic being

searched, and a focused crawling usually relies on a general Web search engine for providing starting points.

2.4.2 Re-visit policy

The Web has a very dynamic nature, and crawling a fraction of the Web cantake a long time, usually

measured in weeks or months. By the time a Web crawler has finished its crawl, many events could have

happened. We characterize these events as creations, updates and deletions [BYCSJ04]:

Creations When a page is created, it will not be visible on the public Web space until it is linked, so we

assume that at least one page update –adding a link to the new Web page– must occur for a Web page

creation to be visible.

A Web crawler starts with a set of starting URLs, usually a list of domain names,so registering a

domain name can be seen as the act of creating a URL. Also, under some schemes of cooperation the

Web server could provide a list of URLs without the need of a link, as shown in Chapter??.

Updates Page changes are difficult to characterize: an update can be eitherminor, or major. An update

is minor if it is at the paragraph or sentence level, so the page is semantically almost the same and

references to its content are still valid. On the contrary, in the case of a major update, all references to

its content are not valid anymore. It is customary to consideranyupdate asmajor, as it is difficult to

judge automatically if the page’s content is semantically the same. Characterization of partial changes

is studied in [LWP+01, NCO04].

21

Deletions A page is deleted if it is removed from the public Web, or if all the links to that page are removed.

Note that even if all the links to a page are removed, the page is no longer visible in the Web site, but

it will still be visible by the Web crawler. It is almost impossible to detect that a page has lost all its

links, as the Web crawler can never tell if links to the target page are not present, or if they are only

present in pages that have not been crawled.

Undetected deletions are more damaging for a search engine’s reputation than updates, as they are

more evident to the user. The study by Lawrence and Giles about searchengine performance [LG00]

reports that on average 5.3% of the links returned by search engines point to deleted pages.

Cost functions

From the search engine’s point of view, there is a cost associated with not detecting an event, and thus having

an outdated copy of a resource. The most used cost functions, introduced in [CGM00], are freshness and

age.

Freshness This is a binary measure that indicates whether the local copy is accurate ornot. The freshness

of a pagep in the repository at timet is defined as:

Fp(t) =







1 if p is equal to the local copy at timet

0 otherwise
(2.7)

Age This is a measure that indicates how outdated the local copy is. The age of a pagep in the repository,

at timet is defined as:

Ap(t) =







0 if p is not modified at timet

t −modification time ofp otherwise
(2.8)

The evolution of these two quantities is depicted in Figure 2.9.

Coffmanet al. [EGC98] worked with a definition of the objective of a Web crawler that is equivalent to

freshness, but use a different wording: they propose that a crawler must minimize the fraction of time pages

remain outdated. They also noted that the problem of Web crawling can be modeled as a multiple-queue,

single-server polling system, on which the Web crawler is the server and theWeb sites are the queues. Page

modifications are the arrival of the customers, and switch-over times are theinterval between page accesses

to a single Web site. Under this model, mean waiting time for a customer in the polling system is equivalent

to the average age for the Web crawler.

22

Figure 2.9: Evolution of freshness and age with time. Two types of event can occur: modifi-

cation of a Web page in the server (eventmodify) and downloading of the modified page by the

crawler (eventsync).

Strategies

The objective of the crawler is to keep the average freshness of pagesin its collection as high as possibly, or

to keep the average age of pages as low as possible. These objectives are not equivalent: in the first case,

the crawler is just concerned withhow manypages are out-dated, while in the second case, the crawler is

concerned withhow oldthe local copies of pages are.

Two simple re-visiting policies were studied by Cho and Garcia-Molina [CGM03a]:

Uniform policy This involves re-visiting all pages in the collection with the same frequency, regardless of

their rates of change.

Proportional policy This involves re-visiting more often the pages that change more frequently.The visit-

ing frequency is directly proportional to the (estimated) change frequency.

In both cases, the repeated crawling order of pages can be done eitherat random or with a fixed order.

Cho and Garcia-Molina proved the surprising result that, in terms of average freshness, theuniform

policy outperforms theproportional policyin both a simulated Web and a real Web crawl. The explanation

for this result comes from the fact that, when a page changes too often, the crawler will waste time by trying

to re-crawl it too fast and still will not be able to keep its copy of the page fresh. ”To improve freshness, we

should penalize the elements that change too often” [CGM03a].

The optimal re-visiting policy is neither the uniform policy nor the proportionalpolicy. The optimal

23

method for keeping average freshness high includes ignoring the pagesthat change too often, and the optimal

for keeping average age low is to use access frequencies that monotonically (and sub-linearly) increase with

the rate of change of each page. In both cases, the optimal is closer to the uniform policy than to the

proportional policy: as Coffmanet al. [EGC98] note, “in order to minimize the expected obsolescence time,

the accesses to any particular page should be kept as evenly spaced aspossible”.

Explicit formulas for the re-visit policy are not attainable in general, but they are obtained numerically,

as they depend on the distribution of page changes. Note that the re-visitingpolicies considered here regard

all pages as homogeneous in terms of quality –all pages on the Web are worththe same– something that is

not a realistic scenario, so further information about the Web page quality should be included to achieve a

better crawling policy.

2.4.3 Politeness policy

As noted by Koster [Kos95], the use of Web robots is useful for a number of tasks, but comes with a price

for the general community. The costs of using Web robots include:

• Network resources, as robots require considerable bandwidth, and operate with a high degree of par-

allelism during a long period of time.

• Server overload, especially if the frequency of accesses to a given server is too high.

• Poorly written robots, which can crash servers or routers, or which download pages they cannot handle.

• Personal robots that, if deployed by too many users, can disrupt networks and Web servers.

A partial solution to these problems is the robots exclusion protocol [Kos96]that is a standard for

administrators to indicate which parts of their Web servers should not be accessed by robots. This standard

does not include a suggestion for the interval of visits to the same server, even though this interval is the most

effective way of avoiding server overload.

The first proposal for the interval between connections was given in [Kos93] and was 60 seconds.

However, if we download pages at this rate from a Web site with more than 100,000 pages over a perfect

connection with zero latency and infinite bandwidth, it would take more than 2 months to download only

that entire Web site; also, we would be using a fraction of the resources from that Web server permanently.

This does not seems acceptable.

Cho [CGM03b] uses 10 seconds as an interval for accesses, and theWIRE crawler [BYC02] uses 15

seconds as the default. The Mercator Web crawler [HN99] follows an adaptive politeness policy: if it tookt

seconds to download a document from a given sever, the crawler waits for 10×t seconds before downloading

the next page. Dillet al. [?] use 1 second.

24

Anecdotal evidence from access logs shows that access intervals from known crawlers vary between 20

seconds and 3–4 minutes. It is worth noticing that even when being very polite, and taking all the safeguards

to avoid overloading Web servers, some complaints from Web server administrators are received. Brin and

Page note that:

“... running a crawler which connects to more than half a million servers (...) generates a fair

amount of email and phone calls. Because of the vast number of people coming on line, there

are always those who do not know what a crawler is, because this is the first one they have seen.”

[BP98].

2.4.4 Parallelization policy

A parallel crawler is a crawler that runs multiple process in parallel. The goal is to maximize the download

rate while minimizing the overhead from parallelization and to avoid repeated downloads of the same page.

To avoid downloading the same page more than once, the crawling system requires a policy for assigning

the new URLs discovered during the crawling process, as the same URL can be found by two different

crawling processes. Cho and Garcia-Molina [CGM02] studied two types of policy:

Dynamic assignment With this type of policy, a central server assigns new URLs to different crawlers

dynamically. This allows the central server to, for instance, dynamically balance the load of each

crawler.

With dynamic assignment, typically the systems can also add or remove downloader processes. The

central server may become the bottleneck, so most of the workload must be transfered to the distributed

crawling processes for large crawls.

There are two configurations of crawling architectures with dynamic assignment that have been de-

scribed by Shkapenyuk and Suel [SS02]:

• A small crawler configuration, in which there is a central DNS resolver andcentral queues per

Web site, and distributed downloaders.

• A large crawler configuration, in which the DNS resolver and the queues are also distributed.

Static assignment With this type of policy, there is a fixed rule stated from the beginning of the crawl that

defines how to assign new URLs to the crawlers.

For static assignment, a hashing function can be used to transform URLs (or, even better, complete

Web site names) into a number that corresponds to the index of the corresponding crawling process.

As there are external links that will go from a Web site assigned to one crawling process to a Web site

assigned to a different crawling process, some exchange of URLs must occur.

25

To reduce the overhead due to the exchange of URLs between crawling processes, the exchange should

be done in batch, several URLs at a time, and the most cited URLs in the collection should be known

by all crawling processes before the crawl (e.g.: using data from a previous crawl) [CGM02].

An effective assignment function must have three main properties: each crawling process should get

approximately the same number of hosts (balancing property), if the number of crawling processes grows,

the number of hosts assigned to each process must shrink (contra-variance property), and the assignment

must be able to add and remove crawling processes dynamically. Boldiet al. [BCSV02] propose to use

consistent hashing, which replicates the buckets, so adding or removing abucket does not requires re-hashing

of the whole table to achieve all of the desired properties.

2.5 Web crawler architecture

A crawler must have a good crawling strategy, as noted in the previous sections, but it also needs a highly

optimized architecture. Shkapenyuk and Suel [SS02] noted that:

“While it is fairly easy to build a slow crawler that downloads a few pages persecond for a short

period of time, building a high-performance system that can download hundreds of millions of

pages over several weeks presents a number of challenges in system designed, I/O and network

efficiency, and robustness and manageability.”

Web crawlers are a central part of search engines, and details on theiralgorithms and architecture are

kept as business secrets. When crawler designs are published, thereis often an important lack of detail

that prevents other from reproducing the work. There are also emerging concerns about “search engine

spamming”, which prevent major search engines from publishing their ranking algorithms. The typical high-

level architecture of Web crawlers is shown in Figure 2.10.

2.5.1 Examples of Web crawlers

The following is a list of published crawler architectures for general-purpose crawlers (excluding focused

Web crawlers), with a brief description that includes the names given to the different components and out-

standing features:

RBSE [Eic94] was the first published Web crawler. It was based on two programs: the first program,

“spider” maintains a queue in a relational database, and the second program “mite”, is a modifiedwww

ASCII browser that downloads the pages from the Web.

26

Figure 2.10: Typical high-level architecture of a Web crawler.

WebCrawler [Pin94] was used to build the first publicly-available full-text index of a sub-set of the Web.

It was based on lib-WWW to download pages, and another program to parse and order URLs for

breadth-first exploration of the Web graph. It also included a real-time crawler that followed links

based on the similarity of the anchor text with the provided query.

World Wide Web Worm [McB94] was a crawler used to build a simple index of document titles and URLs.

The index could be searched by using thegrep UNIX command.

Internet Archive Crawler [Bur97] is a crawler designed with the purpose of archiving periodic snapshots

of a large portion of the Web. It uses several process in a distributed fashion, and a fixed number

of Web sites are assigned to each process. The inter-process exchange of URLs is carried in batch

with a long time interval between exchanges, as this is a costly process. The Internet Archive Crawler

also has to deal with the problem of changing DNS records, so it keeps anhistorical archive of the

hostname to IP mappings.

WebSPHINX [MB98] is composed of a Java class library that implements multi-threaded Web page re-

trieval and HTML parsing, and a graphical user interface to set the starting URLs, to extract the

downloaded data and to implement a basic text-based search engine.

Google Crawler [BP98] is described in some detail, but the reference is only about an early version of

its architecture, which was based in C++ and Python. The crawler was integrated with the indexing

process, because text parsing was done for full-text indexing and also for URL extraction. There is an

URL server that sends lists of URLs to be fetched by several crawling processes. During parsing, the

URLs found were passed to a URL server that checked if the URL have been previously seen. If not,

27

the URL was added to the queue of the URL server.

CobWeb [dSVG+99] uses a central “scheduler” and a series of distributed “collectors”. The collectors parse

the downloaded Web pages and send the discovered URLs to the scheduler, which in turns assign them

to the collectors. The scheduler enforces a breadth-first search order with a politeness policy to avoid

overloading Web servers. The crawler is written in Perl.

Mercator [HN99] is a modular Web crawler written in Java. Its modularity arises from theusage of in-

terchangeable “protocol modules” and “processing modules”. Protocols modules are related to how

to acquire the Web pages (e.g.: by HTTP), and processing modules are related to how to process

Web pages. The standard processing module just parses the pages andextract new URLs, but other

processing modules can be used to index the text of the pages, or to gatherstatistics from the Web.

WebFountain [EMT01] is a distributed, modular crawler similar to Mercator but written in C++.It features

a “controller” machine that coordinates a series of “ant” machines. After repeatedly downloading

pages, a change rate is inferred for each page and a non-linear programming method must be used

to solve the equation system for maximizing freshness. The authors recommend to use this crawling

order in the early stages of the crawl, and then switch to a uniform crawling order, in which all pages

being visited with the same frequency.

PolyBot [SS02] is a distributed crawler written in C++ and Python, which is composed of a “crawl man-

ager”, one or more “downloaders” and one or more “DNS resolvers”.Collected URLs are added to

a queue on disk, and processed later to search for seen URLs in batch mode. The politeness policy

considers both third and second level domains (e.g.:www.example.com andwww2.example.com are

third level domains) because third level domains are usually hosted by the same Web server.

WebRACE [ZYD02] is a crawling and caching module implemented in Java, and used as a part of a more

generic system called eRACE. The system receives requests from users for downloading Web pages, so

the crawler acts in part as a smart proxy server. The system also handles requests for “subscriptions” to

Web pages that must be monitored: when the pages changes, they must be downloaded by the crawler

and the subscriber must be notified. The most outstanding feature of WebRACE is that, while most

crawlers start with a set of “seed” URLs, WebRACE is continuously receiving new starting URLs to

crawl from.

Ubicrawler [BCSV02] is a distributed crawler written in Java, and it has no central process. It is composed

of a number of identical “agents”; and the assignment function is calculatedusing consistent hashing

of the host names. There is zero overlap, meaning that no page is crawledtwice, unless a crawling

agent crashes (then, another agent must re-crawl the pages from the failing agent). The crawler is

designed to achieve high scalability and to be tolerant to failures.

28

FAST Crawler [RM02] is the crawler used by the FAST search engine, and a general description of its

architecture is available. It is a distributed architecture in which each machineholds a “document

scheduler” that maintains a queue of documents to be downloaded by a “document processor” that

stores them in a local storage subsystem. Each crawler communicates with the other crawlers via a

“distributor” module that exchanges hyperlink information.

WIRE [BYC02, CBY02] is the crawler developed for this research, and is described in detail in Chapter??

of this thesis.

In addition to the specific crawler architectures listed above, there are general crawler architectures

published by Cho [CGM02] and Chakrabarti [Cha03].

A few Web crawlers have been released under the GNU public license: Larbin [Ail04], WebBase

[Dac02], a free version of WebSPHINX [Mil04], GRUB [gru04] and HT://Dig [htd04]. For commercial

products, see [SS04, bot04].

About practical issues of building a Web crawler, which is the subject of Appendix??, a list of recom-

mendations for building a search engine was written by Patterson [Pat04].

2.5.2 Architectures for cooperation between Web sites and search engines

We study cooperation schemes for Web servers in Chapter??. In this thesis, we only consider the cooperation

between Web servers and crawlers, not between crawlers: this issue isstudied in [McL02], using a crawler

simulator and proving that crawlers can benefit from sharing information about last-modification date of

pages. In this case, the cooperation between search engines occurs at crawling time, but search engines

could also exchange information later, like in the “STARTS” proposal [GCGMP97].

There are several methods for keeping mirrors (replicas) of informationservices; these methods are not

directly suitable for Web server cooperation because the crawler usuallyis interested in only a subset of the

pages (the most interesting ones) and not in the entire site. Mirroring methods include RSYNC [TP03], that

generates a series of fingerprints for “chunks” of data, and then compares those fingerprints to compress and

send only the modified parts. CTM [Kam03] is a method for sending differences via e-mail, used to keep

copies of source code for the Open BSD operating systems up-to-date.

A specific proposal for pushing last-modification data to Web crawlers is presented by Gupta and Camp-

bell [GC01], including a cost model in which the meta-data is sent only if the Web site is misrepresented

above a certain threshold in the search engine. A more general Internetnotification system was presented by

Brandt and Kristensen [BK97].

The Distribution and Replication Protocol (DRP) [vHGH+97] provides a protocol to distribute data

using HTTP and data fingerprinting and index files. Another proposal that uses a series of files containing

descriptions of Web pages, is presented in [BCGMS00].

29

DASL [RRDB02], the DAV searching and locating protocol, is a proposed extension to DAV that will

allow searching the Web server using an HTTP query with certain extensions, but neither the query syntax

nor the query semantics are specified by the protocol.

2.6 Conclusions

In this chapter, we have surveyed selected publications from the related work that are relevant for this thesis.

We have focused in link analysis and Web crawling.

In the literature, we found that link analysis is an active research topic in theinformation retrieval

community. The Web is very important today because it is the cornerstone of the information age, and is

used by millions of persons every day, and it is natural that it provides oportunities for both business and

research. Link analysis is, in a sense, the most important “new” component of the Web in relation to previous

document collections and traditional information retrieval, and probably this explain why the field of link

analysis has been so active.

On the contrary, the topic of Web crawling design is not represented so well in the literature, as there

are few publications available. Web crawling research is affected by business secrecy because Web search

engines, in a sense, mediate the interaction between users and Web sites andare the key for success of many

Web sites. There is also secrecy involved because there are many concerns about search engine spamming,

because there are no known ranking functions absolutely resilient to malicious manipulation, so ranking

functions and crawling methods are usually not published.

The next chapter starts the main part of this thesis by presenting a new crawling model and architecture.

30

Bibliography

[AH00] Eytan Adar and Bernardo A. Huberman. The economics of web surfing. InPoster Proceedings

of the Ninth Conference on World Wide Web, Amsterdam, Netherlands, May 2000.

[Ail04] Sebastien Ailleret. Larbin. http://larbin.sourceforge.net/index-eng.html, 2004. GPL software.

[AOV03] G. Amati, I. Ounis, and Plachouras V. The dynamic absorbing model for the web. Technical

Report TR-2003-137, Department of Computing Science, University ofGlasgow, April 2003.

[BA99] Albert-Lászĺo Barab́asi and Ŕeka Albert. Emergence of scaling in random networks.Science,

286(5439):509–512, October 1999.

[Bar01] Albert-Lászĺo Barab́asi. The physics of the web.PhysicsWeb.ORG, online journal, July 2001.

[Bar02] Albert-Lászĺo Barab́asi. Linked: the new science of networks. Perseus Publishing, 2002.

[Bar04] Bradford L. Barrett. WebAlizer: log file analysis program. http://www.mrunix.net/webalizer/,

2004.

[BCF+03] Andŕas A. Bencźur, Károly Csaloǵany, D́aniel Fogaras, Eszter Friedman, Tamás Sarĺos, Mát́e

Uher, and Eszter Windhager. Searching a small national domain – a preliminary report. In

Poster Proceedings of Conference on World Wide Web, Budapest, Hungary, May 2003.

[BCGMS00] Onn Brandman, Junghoo Cho, Hector Garcia-Molina, and Narayanan Shivakumar. Crawler-

friendly web servers. InProceedings of the Workshop on Performance and Architecture of

Web Servers (PAWS), Santa Clara, California, USA, June 2000.

[BCS+00] Brian Brewington, George Cybenko, Raymie Stata, Krishna Bharat, and Farzin Maghoul. How

dynamic is the web? InProceedings of the Ninth Conference on World Wide Web, pages 257

– 276, Amsterdam, Netherlands, May 2000.

[BCSV02] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Ubicrawler: A scal-

able fully distributed web crawler. InProceedings of the eight Australian World Wide Web

Conference (AusWeb), 2002.

31

[BH98] Krishna Bharat and Monika R. Henzinger. Improved algorithms for topic distillation in a

hyperlinked environment. InProceedings of the 21st Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, pages 104–111, Melbourne,

Australia, August 1998. ACM Press, New York.

[BK97] S. Brandt and A. Kristensen. Web push as an Internet Notification Service. InW3C workshop

on push technology, Boston, MA, USA, 1997.

[BKM +00] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Rajagopalan,

Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure in the web: Experiments

and models. InProceedings of the Ninth Conference on World Wide Web, pages 309–320,

Amsterdam, Netherlands, May 2000.

[bot04] Botspot. http://www.botspot.com/, 2004.

[Bou04] Thomas Boutell. WUsage: Web log analysis software. http://www.boutell.com/wusage/, 2004.

[BP98] Sergei Brin and Lawrence Page. The anatomy of a large-scalehypertextual Web search engine.

Computer Networks and ISDN Systems, 30(1–7):107–117, April 1998.

[BS00] Bettina Berendt and Myra Spiliopoulou. Analysis of navigation behaviour in web sites inte-

grating multiple information systems.The VLDB journal, (9):56–75, 2000.

[Bur97] Mike Burner. Crawling towards eternity - building an archive ofthe world wide web.Web

Techniques, 2(5), May 1997.

[BY03] Ricardo Baeza-Yates. The Web of Spain.UPGRADE, 3(3):82–84, 2003.

[BYC01] Ricardo Baeza-Yates and Carlos Castillo. Relating Web characteristics with link based Web

page ranking. InProceedings of String Processing and Information Retrieval, pages 21–32,

Laguna San Rafael, Chile, November 2001. IEEE CS Press.

[BYC02] Ricardo Baeza-Yates and Carlos Castillo. Balancing volume, quality and freshness in web

crawling. InSoft Computing Systems - Design, Management and Applications, pages 565–

572, Santiago, Chile, 2002. IOS Press Amsterdam.

[BYCSJ04] Ricardo Baeza-Yates, Carlos Castillo, and Felipe Saint-Jean. Web Dynamics, chapter Web

Dynamics, Structure and Page Quality, pages 93–109. Springer, 2004.

[BYP03] Ricardo Baeza-Yates and Bárbara Poblete. Evolution of the Chilean Web structure composi-

tion. In Proceedings of Latin American Web Conference, pages 11–13, Santiago, Chile, 2003.

IEEE CS Press.

32

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto.Modern Information Retrieval. ACM Press /

Addison-Wesley, 1999.

[CBY02] Carlos Castillo and Ricardo Baeza-Yates. A new crawling model. In Poster proceedings of

the eleventh conference on World Wide Web, Honolulu, Hawaii, USA, May 2002. (Extended

Poster).

[CDR+98] Soumen Chakrabarti, Byron Dom, Prabhakar Raghavan, Sridhar Rajagopalan, David Gibson,

and Jon Kleinberg. Automatic resource compilation by analyzing hyperlink structure and

associated text. InWorld Wide Web Conference, pages 65–74, Brisbane, Australia, 1998.

Elsevier Science Publishers B. V.

[CGM00] Junghoo Cho and Hector Garcia-Molina. Synchronizing a database to improve freshness. In

Proceedings of ACM International Conference on Management of Data(SIGMOD), pages

117–128, Dallas, Texas, USA, May 2000.

[CGM02] Junghoo Cho and Hector Garcia-Molina. Parallel crawlers. In Proceedings of the eleventh

international conference on World Wide Web, pages 124–135, Honolulu, Hawaii, USA, May

2002. ACM Press.

[CGM03a] Junghoo Cho and Hector Garcia-Molina. Effective page refresh policies for web crawlers.

ACM Transactions on Database Systems, 28(4), December 2003.

[CGM03b] Junghoo Cho and Hector Garcia-Molina. Estimating frequency of change.ACM Transactions

on Internet Technology, 3(3), August 2003.

[CGMP98] Junghoo Cho, Hector Garcı́a-Molina, and Lawrence Page. Efficient crawling through URL

ordering. InProceedings of the seventh conference on World Wide Web, Brisbane, Australia,

April 1998.

[Cha03] Soumen Chakrabarti.Mining the Web. Morgan Kaufmann Publishers, 2003.

[Cho00] Junghoo Cho. The evolution of the web and implications for an incremental crawler. In

Proceedings of 26th International Conference on Very Large Databases (VLDB), pages 527–

534, Cairo, Egypt, September 2000. Morgan Kaufmann Publishers.

[CK97] S. Jeromy Carriére and Rick Kazman. Webquery: searching and visualizing the web through

connectivity.Computer Networks and ISDN Systems, 29(8-13):1257–1267, September 1997.

[CMS99] Robert Cooley, Bamshad Mobasher, and Jaideep Srivastava. Data preparation for mining world

wide web browsing patterns.Knowledge and Information Systems, 1(1):5–32, 1999.

33

[CvD99] Soumen Chakrabarti, Martin van den Berg, and Byron Dom. Focused crawling: a new ap-

proach to topic-specific web resource discovery.Computer Networks, 31(11–16):1623–1640,

1999.

[Dac02] Lois Dacharay. WebBase. http://freesoftware.fsf.org/webbase/, 2002. GPL Software.

[Dav00] Brian D. Davison. Topical locality in the web. InProceedings of the 23rd annual international

ACM SIGIR conference on research and development in information retrieval, pages 272–279.

ACM Press, 2000.

[DCL+00] Michelangelo Diligenti, Frans Coetzee, Steve Lawrence, C. Lee Giles,and Marco Gori. Fo-

cused crawling using context graphs. InProceedings of 26th International Conference on Very

Large Databases (VLDB), pages 527–534, Cairo, Egypt, September 2000.

[DFKM97] Fred Douglis, Anja Feldmann, Balachander Krishnamurthy, and Jeffrey C. Mogul. Rate of

change and other metrics: a live study of the world wide web. InUSENIX Symposium on

Internet Technologies and Systems, pages 147–158, Monterey, California, USA, December

1997.

[DGM04] Michelangelo Diligenti, Marco Gori, and Marco Maggini. A unified probabilistis framework

for Web page scoring systems.IEEE Transactions on Knowledge and Data Engineering,

16(1):4–16, 2004.

[dSVG+99] Altigran Soares da Silva, Eveline A. Veloso, Paulo Braz Golgher, Berthier A. Ribeiro-Neto,

Alberto H. F. Laender, and Nivio Ziviani. Cobweb - a crawler for the brazilian web. In

Proceedings of String Processing and Information Retrieval (SPIRE), pages 184–191, Cancun,

México, September 1999. IEEE CS Press.

[Eco02] The Economist. What does the internet look like?The Economist, October 2002.

[EGC98] R. Weber Edward G. Coffman, Z. Liu. Optimal robot scheduling for web search engines.

Journal of Scheduling, 1(1):15–29, 1998.

[Eic94] D. Eichmann. The RBSE spider: balancing effective search against web load. InProceedings

of the first World Wide Web Conference, Geneva, Switzerland, May 1994.

[EMT01] Jenny Edwards, Kevin S. McCurley, and John A. Tomlin. An adaptive model for optimizing

performance of an incremental web crawler. InProceedings of the Tenth Conference on World

Wide Web, pages 106–113, Hong Kong, May 2001. Elsevier Science.

[EMT04] Nadav Eiron, Kevin S. McCurley, and John A. Tomlin. Ranking theweb frontier. InProceed-

ings of the 13th international conference on World Wide Web, pages 309–318. ACM Press,

2004.

34

[ER60] Paul Erd̃os and Alfred Ŕenyi. Random graphs.Publication of the Mathematical Institute of

the Hungarian Acadamy of Science, 5:17 – 61, 1960.

[FMNW03] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L.Wiener. A large-scale study of the

evolution of web pages. InProceedings of the Twelfth Conference on World Wide Web, pages

669 – 678, Budapest, Hungary, May 2003. ACM Press.

[GC01] Vijay Gupta and Roy H. Campbell. Internet search engine freshness by web server help. In

Proceedings of the Symposium on Internet Applications (SAINT), pages 113–119, San Diego,

California, USA, 2001.

[GCGMP97] Luis Gravano, Kevin Chen-Chuan Chang, Hector Garcia-Molina, and Andreas Paepcke.

STARTS: Stanford proposal for internet meta-searching. In Joan Peckham, editor,Proceed-

ings of International Conference on Management of Data (SIGMOD), pages 207–218. ACM

Press, 1997.

[goo04] Google search engine. http://www.google.com/, 2004.

[gru04] Grub, a distributed crawling project. http://www.grub.org, 2004. GPL software.

[GS96] James Gwertzman and Margo Seltzer. World-wide web cache consistency. InProceedings of

the 1996 Usenix Technical Conference, San Diego, California, USA, January 1996.

[GS03] Daniel Gomes and Mrio J. Silva. A characterization of the portuguese web. InProceedings of

3rd ECDL Workshop on Web Archives, Trondheim, Norway, August 2003.

[HA99] Bernardo A. Huberman and Lada A. Adamic. Evolutionary dynamics of the World Wide Web.

Condensed Matter, January 1999. (paper 9901071).

[Hav02] Taher H. Haveliwala. Topic-sensitive pagerank. InProceedings of the Eleventh World Wide

Web Conference, pages 517–526, Honolulu, Hawaii, USA, May 2002. ACM Press.

[Hen01] Monika Henzinger. Hyperlink analysis for the web.IEEE Internet Computing, 5(1):45–50,

2001.

[HHMN99] Monika R. Henzinger, Allan Heydon, Michael Mitzenmacher, and Marc Najork. Measuring

index quality using random walks on the Web.Computer Networks, 31(11–16):1291–1303,

1999.

[HHMN00] Monika Henzinger, Allan Heydon, Michael Mitzenmacher, andMarc Najork. On near–

uniform url sampling. InProceedings of the Ninth Conference on World Wide Web, pages

295–308, Amsterdam, Netherlands, May 2000. Elsevier Science.

35

[HM98] Susan Haigh and Janette Megarity. Measuring web site usage: Log file analysis. Network

Notes, (57), 1998.

[HN99] Allan Heydon and Marc Najork. Mercator: A scalable, extensibleweb crawler.World Wide

Web Conference, 2(4):219–229, April 1999.

[HPPL98] Bernardo A. Huberman, Peter L. T. Pirolli, James E. Pitkow, and Rajan M. Lukose. Strong

regularities in world wide web surfing.Science, 280(5360):95–97, April 1998.

[htd04] HT://Dig. http://www.htdig.org/, 2004. GPL software.

[Kam03] Poul-Henning Kamp. OpenBSD CTM. http://www.openbsd.org/ctm.html, 2003.

[Kle99] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM,

46(5):604–632, 1999.

[Koe04] Wallace Koehler. A longitudinal study of Web pages continued: aconsideration of document

persistence.Information Research, 9(2):(paper 174), January 2004.

[Kos93] Martijn Koster. Guidelines for robots writers. http://www.robotstxt.org/wc/guidelines.html,

1993.

[Kos95] Martijn Koster. Robots in the web: threat or treat ?ConneXions, 9(4), April 1995.

[Kos96] Martijn Koster. A standard for robot exclusion. http://www.robotstxt.org/wc/exclusion.html,

1996.

[KRR+00] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal. Stochastic

models for the web graph. InProceedings of the 41st Annual Symposium on Foundations of

Computer Science (FOCS), pages 57–65. IEEE CS Press, 2000.

[LBL01] Mark Levene, Jose Borges, and George Loizou. Zipf’s lawfor web surfers.Knowledge and

Information Systems, 3(1):120–129, 2001.

[LG00] Steve Lawrence and C. Lee Giles. Accessibility of information on theweb. Intelligence,

11(1):32–39, 2000.

[LH98] Rajan M. Lukose and Bernardo A. Huberman. Surfing as a real option. InProceedings of the

first international conference on Information and computation economies, pages 45–51. ACM

Press, 1998.

[Li98] Yanhong Li. Toward a qualitative search engine.IEEE Internet Computing, pages 24 – 29,

July 1998.

36

[LWP+01] Lipyeow Lim, Min Wang, Sriram Padmanabhan, Jeffrey Scott Vitter, and Ramesh Agarwal.

Characterizing Web document change. InProceedings of the Second International Confer-

ence on Advances in Web-Age Information Management, volume 2118 ofLecture Notes in

Computer Science, pages 133–144, London, UK, July 2001. Springer-Verlag.

[LZY04] Jiming Liu, Shiwu Zhang, and Jie Yang. Characterizing web usage regularities with informa-

tion foraging agents.IEEE Transactions on Knowledge and Data Engineering, 16(5):566 –

584, 2004.

[MB98] Robert Miller and Krishna Bharat. Sphinx: A framework for creating personal, site-specific

web crawlers. InProceedings of the seventh conference on World Wide Web, Brisbane, Aus-

tralia, April 1998.

[MB03] John Markwell and David W. Brooks. Link-rot limits the usefulness of Web-based educational

materials in biochemistry and molecular biology.Biochem. Mol. Biol. Educ., 31:69–72, 2003.

[McB94] Oliver A. McBryan. GENVL and WWWW: Tools for taming the web. In Proceedings of the

first World Wide Web Conference, Geneva, Switzerland, May 1994.

[McL02] Gregory Louis McLearn. Autonomous cooperating web crawlers, 2002.

[Mil04] Rob Miller. Websphinx, a personal, customizable web crawler. http://www-

2.cs.cmu.edu/ rcm/websphinx, 2004. Apache-style licensed, open source software.

[NCO04] Alexandros Ntoulas, Junghoo Cho, and Christopher Olston. What’s new on the web?: the

evolution of the web from a search engine perspective. InProceedings of the 13th conference

on World Wide Web, pages 1 – 12, New York, NY, USA, May 2004. ACM Press.

[NW01] Marc Najork and Janet L. Wiener. Breadth-first crawling yields high-quality pages. InPro-

ceedings of the Tenth Conference on World Wide Web, pages 114–118, Hong Kong, May 2001.

Elsevier Science.

[Pat04] Anna Patterson. Why writing your own search engine is hard.ACM Queue, pages 49 – 53,

April 2004.

[PBMW98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The Pagerank citation

algorithm: bringing order to the web. InProceedings of the seventh conference on World Wide

Web, Brisbane, Australia, April 1998.

[PFL+02] David M. Pennock, Gary W. Flake, Steve Lawrence, Eric J. Glover, and C. Lee Giles. Winners

don’t take all: Characterizing the competition for links on the web.Proceedings of the National

Academy of Sciences, 99(8):5207–5211, April 2002.

37

[Pin94] Brian Pinkerton. Finding what people want: Experiences with the WebCrawler. InProceed-

ings of the first World Wide Web Conference, Geneva, Switzerland, May 1994.

[POA03] V. Plachouras, I. Ounis, and G. Amati. A Utility-oriented HyperlinkAnalysis Model for the

Web. InProceedings of the First Latin Web Conference, pages 123–131. IEEE Press, 2003.

[RAW+02] Andreas Rauber, Andreas Aschenbrenner, Oliver Witvoet, Robert M. Bruckner, and Max

Kaiser. Uncovering information hidden in web archives.D-Lib Magazine, 8(12), 2002.

[RM02] Knut Magne Risvik and Rolf Michelsen. Search engines and webdynamics.Computer Net-

works, 39(3), June 2002.

[RRDB02] J.F. Reschke, S. Reddy, J. Davis, and A. Babich. DASL - DAV searching and locating protocol.

http://www.webdav.org/dasl/, 2002.

[SB88] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text re-

trieval. Information Processing and Management: an International Journal, 24(5):513–523,

1988.

[Spi03] Diomidis Spinellis. The decay and failures of web references.Communications of the ACM,

46(1):71–77, January 2003.

[SS02] Vladislav Shkapenyuk and Torsten Suel. Design and implementation of a high-performance

distributed web crawler. InProceedings of the 18th International Conference on Data Engi-

neering (ICDE), pages 357 – 368, San Jose, California, February 2002. IEEE CS Press.

[SS04] Danny Sullivan and Chris Sherman. Search Engine Watch reports. http://www.searchengine-

watch.com/reports/, 2004.

[TG97] Linda Tauscher and Saul Greenberg. Revisitation patterns in world wide web navigation. In

Proceedings of the Conference on Human Factors in Computing Systems CHI’97, 1997.

[TK02] Pang-Ning Tan and Vipin Kumar. Discovery of web robots session based on their navigational

patterns.Data Mining and Knowledge discovery, 6(1):9–35, 2002.

[Tom03] John A. Tomlin. A new paradigm for ranking pages on the world wide web. InProceedings of

the Twelfth Conference on World Wide Web, pages 350–355, Budapest, Hungary, May 2003.

ACM Press.

[TP03] Andrew Tridgell and Martin Pool. RSYNC: fast incremental file transfer.

http://samba.anu.edu.au/rsync/, 2003.

[TT04] Doru Tanasa and Brigitte Trousse. Advanced data preprocessing for intersites Web usage

mining. IEEE Intelligent Systems, 19(2):59–65, 2004.

38

[Tur04] Stephen Turner. Analog: WWW log file analysis. http://www.analog.cx/, 2004.

[VdMG+00] Eveline A. Veloso, Edleno de Moura, P. Golgher, A. da Silva, R. Almeida, A. Laender,

B. Ribeiro-Neto, and Nivio Ziviani. Um retrato da web brasileira. InProceedings of Sim-

posio Brasileiro de Computacao, Curitiba, Brasil, July 2000.

[vHGH+97] Arthur van Hoff, John Giannandrea, Mark Hapner, Steve Carter, and Milo Medin. DRP -

distribution and replication protocol. http://www.w3.org/TR/NOTE-drp, 1997.

[web04] WebTrends corporation. http://www.webtrends.com/, 2004.

[YL96] Budi Yuwono and Dik Lun Lee. Search and ranking algorithms for locating resources on the

world wide web. InProceedings of the twelfth International Conference on Data Engineering

(ICDE), pages 164–171, Washington, DC, USA, February 1996. IEEE CS Press.

[ZYD02] Demetrios Zeinalipour-Yazti and Marios D. Dikaiakos. Design and implementation of a dis-

tributed crawler and filtering processor. InProceedings of the fifth Next Generation Informa-

tion Technologies and Systems (NGITS), volume 2382 ofLecture Notes in Computer Science,

pages 58–74, Caesarea, Israel, June 2002. Springer.

39

