Chapter 4

Scheduling Algorithms for Web Crawling

In the previous chapter, we described the general model of our Veelbesr In this chapter, we deal with the
specific algorithms for scheduling the visits to the Web pages.

We started with a large sample of the Chilean Web that was used to build a Vigbage run a crawler
simulator. Several strategies were compared using the simulator to ensutiealdeonditions during the

experiments.

The rest of this chapter is organized as follows: Section 4.1 introducesparimental framework and
Section 4.2 the simulation parameters. Sections 4.3 and 4.4 compare diffdgredtiing policies for long-
and short-term scheduling. In Section 4.5 we test one of these policiegsaisdal Web crawler, and the last
section presents our conclusions.

Portions of this chapter were presented in [CMRBYO04].

4.1 Experimental setup

We tested several scheduling policies in two different datasets coneisigoto Chilean and Greek Web
pages using a crawler simulator. This section describes how the datddeiaithe simulator works.

4.1.1 Datasets: .cland .gr

Dill et al. [DKM *02] studied several sub-sets of the Web, and found that the Web rapH-similar in
several senses and at several scales, and that this self-similaritwasiper as it holds for a number of
different parameters. Top-level domains are useful because thesents pages sharing a common cultural
context; we consider that they are more useful than large Web sitesdeepages in a Web site are more
homogeneous. Note than a large sub-set of the whole Web (and amyasaut subset of the Web) is always
biased by the strategy used to crawl it.



We worked with two datasets that correspond to pages undecthgChile) and. gr (Greek) top-level
domains. We downloaded pages using the WIRE crawler [BYCO02] in thdfiadt mode, including both
static and dynamic pages. While following links, we stopped at depth 5 fardimpages and 15 for static
pages, and we downloaded up to 25,000 pages from each Web site.

We made two complete crawls on each domain, in April and May for Chile, andaijnavid September
for Greece. We downloaded about 3.5 million pages in the Greek Web and 215 million pages in the
Chilean Web. Some demographic information about the two countries is prdganTable?? (page??).
Both datasets are comparable in terms of the number of Web pages, buibiaired from countries with
wide differences in terms of geography, language, demographicsphisto.

4.1.2 Crawler simulator

Using this data, we created a Web graph and ran a simulator by using diiffetgeduling policies on this
graph. This allowed us to compare different strategies under exactlathe conditions.

The simulatof models:

e The selected scheduling policy, including the politeness policy.
e The bandwidth saturation of the crawler Internet link.

e The distribution of the connection speed and latency from Web sites, wtdsloltained during the
experiment described in Secti@f (page??).

e The page sizes, which were obtained during the crawl used to build theyk&pb.

We considered a number of scheduling strategies. Their design is basdtkap priority queue whose
nodes represent sites. For each site-node we have another heapwidlgés of the Web site, as depicted in
Figure 4.1.

At each simulation step, the scheduler chooses the top Website from the gligdeb sites and a
number of pages from the top of the corresponding queue of Web .pages information is sent to a
module that simulates downloading pages from that Website.

4.2 Simulation parameters

The parameters for our different scheduling policies are the following:

1The crawler simulator used for this experiment was implemented by Dwribla Marin and Dr. Andrea Rodriguez, and
designed by them and the author of this thesis based on the design of tliedré@Rler. Details about the crawler simulator are not
given here, as they are not part of the work of this thesis.



Queue of Web pages
for each site

Queue of Web sites

Figure 4.1: Queues used in the crawling simulator. We tested the scimgdablicies using a
structure with two levels: one queue for Web sites and oneigder the Web pages of each
Web site.

e The policy for ordering the queue of Web sites, related to long-term sdingd
e The policy for ordering the queues of Web pages, related to short-tdreasling.
e The intervalw in seconds between requests to a single Web site.

e The number of pages downloaded for each connection when re-using connections with the®HTT
Keep-al i ve feature.

e The number of maximum simultaneous connections, i.e.: the degree of parallelization. Alihveeig
used a large degree of parallelization, we restricted the robots to nexenugre than one connection
to a Web site at a given time.

4.2.1 Interval between connectionsw))

As noted in Sectiof??, a waiting time ofw = 60 seconds is too large, as it would take too long to crawl large
Web sites. Instead, we use= 15 seconds in our experiments.

Liu et al. [Liu98] show that total time of a page download is almost always under éonsks. We
ran our own experiments and measured that for sequential transteich(are usually faster than parallel
transfers) 90% of the pages were transfered in less than 1.5 seemnd35% of the pages in less than 3
seconds, as shown in Figure 4.2.

From the total time, latency is usually larger than the actual transfer time. Thisstfadk situation even
more difficult than what was shown in FiguP&, as the time spent waiting cannot be amortized effectively.
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Figure 4.2: Total download time for sequential transfer of Web pagds;dhata provides from
experiments in the Chilean Web and was used as an input fa¥éfecrawler simulator.

4.2.2 Number of pages per connectiorcy

We have observed the log files of several Web servers during this.th&sidiave found that all the Web

crawlers used by major search engines download only one page pecaawection, and do not re-use the
HTTP connection. We considered downloading multiple pages in the sameatmmto reduce latency, and

measured the impact of this technique in the quality of the scheduling.

The protocol for keeping the connection open was introduced a&etye al i ve feature in HTTP/1.1
[FGMT99]; the configuration of the Apache Web server enables this featudetaylt and allows for a
maximum of 100 objects downloaded per connection, with a timeout of 15 dedmtween requests, so
when usingc > 1 in practice, we should also s#&t< 15 to prevent the server from closing the connection.

4.2.3 Number of simultaneous requests}

All of the robots currently used by Web search engines have a higleeefiparallelization, downloading
hundreds or thousands of pages at a given time. Wesetl (serialization of the requests), as a base case,
r = 64 andr = 256 during the simulations, amd= 1000 during the actual crawl.

As we never open more than one connection to a given Welrsigedgounded by the number of Web
sites available for the crawler, i.e.: the number of Web sites that have unypsitgss$. If this number is too
small, we cannot make use of a high degree of parallelization and the cpwlermance in terms of pages
per second drops dramatically.



The scarcity of large Web sites to download from is especially critical atride&a large crawl, when
we have already downloaded all the public pages from most of the Web itesn downloading pages in
batches, this problem can also arise by the end of a batch, so the pagkstshcarefully selected to include
pages from as many Web sites as possible. This should be a primaryrcaresr parallelism is considered.

4.3 Long-term scheduling

We tested different strategies for crawling pages in the stored Web.gfidghcomplete crawl on the real
Chilean or Greek Web takes about 8 days, so for testing many strategieslitismore efficient to use the
crawler simulator. The simulator also help us by reproducing the exadsoeach time a strategy is tested.

Actual retrieval time for Web pages is simulated by considering the obséatertty and transfer rate
distribution, the observed page size for every downloaded page, argathration of bandwidth, which is
related to the speed and number of active connections at a given time ahthiat®n.

For evaluating the different strategies, we calculated beforehand gjeedPé value of every page in the
whole Web sample and used those values to calculate the cumulative sunerdrifkags the simulated crawl
goes by. We call this measure an “oracle” score since in practice it ismotrk until the complete crawl is
finished. The strategies that are able to reach values close to the tarbedimefaster are considered the
most efficient ones.

There are other possible evaluation strategies for a Web crawler, Ystrategy must consider some
form of global ranking of the Web pages, to measure how fast rankiagasmulated. This global ranking
could be:

e Number of page views, but this is hard to obtain in practice.

e Number of clicks on a search engine, but a search engine’s restgpsesents only a small portion of
the total Web pages.

e A combination of link and text analysis, but there are no established measfugeality that accom-
plish this without a specific query, and we want to assert overall qualityguoality for a specific
topic.

e User votes or ranking.

However, we decided to use Pagerank as the global measure of quakiyseeit can be calculated
automatically and it has a non-zero value for each page.

We consider three types of strategies regarding how much information déineyse: no extra informa-
tion, historical information, and all the information. A random ordering carcbnsidered a baseline for
comparison. In that case, the Pagerank grows linearly with the numbageggrawled.
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All of the strategies are bound to the following restrictiong:= 15 waiting time,c = 1 pages per
connectiony simultaneous connections to different Web sites, and no more than onectiomnto each
Web site at a time. In the first set of experiments we assume a situation of dghvlgth for the Internet
link, i.e., the bandwidth of the Web crawl&ris larger than any of the maximum bandwidths of the Web
serversBMAX,

4.3.1 Strategies with no extra information

These strategies only use the information gathered during the currertingrarocess.

Breadth-first Under this strategy, the crawler visits the pages in breadth-first ordettrgtarts by
visiting all the home pages of all the “seed” Web sites, and Web page hesagsp in such a way that new
pages added go at the end. This is the same strategy tested by Najork ameat \M/01], which in their
experiments showed to capture high-quality pages first.

Backlink-count This strategy crawls first the pages with the highest number of links pointiftg to
so the next page to be crawled is the most linked from the pages alreadyodoled. This strategy was
described by Chet al. [CGMP98].

Batch-pagerank This strategy calculates an estimation of Pagerank, using the pages $aeregery
K pages downloaded. The ndktpages to download are the pages with the highest estimated Pagerank. We
usedK = 100,000 pages, which in our case gives about 30 to 40 Pagerank calcaldtioing the crawl.
This strategy was also studied by Céial. [CGMP98], and it was found to be better than backlink-count.
However, Boldiet al. [BSV04] showed that the approximations of Pagerank using partiahgregn be very
inexact.

Partial-pagerank This is like batch-pagerankbut in between Pagerank re-calculations, a temporary
pagerank is assigned to new pages using the sum of the Pagerank afjgsegminting to it divided by the
number of out-links of those pages.

OPIC This strategy is based on OPIC [APCO03], which can be seen as a welgddkiihk-count strat-
egy. All pages start with the same amount of “cash”. Every time a pagevidettaits “cash” is split among
the pages it links to. The priority of an uncrawled page is the sum of thé™d¢abkas received from the
pages pointing to it. This strategy is similar to Pagerank, but has no randosralitkthe calculation is not
iterative — so it is much faster.

Larger-sites-first The goal of this strategy is to avoid having too many pending pages in angitéeb
to avoid having at the end only a small number of large Web sites that may lepdrotame due to the “do
not overload” rule. The crawler uses the number of un-crawled fagesl so far as the priority for picking
a Web site, and starts with the sites with the larger number of pending pagesstifltegy was introduced
in [CMRBY04] and was found to be better than breadth-first.



4.3.2 Strategies with historical information

These strategies use the Pagerank of a previous crawl as an estimatienRafgerank in this crawl, and
start in the pages with a high Pagerank in the last crawl. This is only anxpyation because Pagerank
can change: Cho and Adams [CA04] report that the average relativefer estimating the Pagerank four
months ahead is about 78%. Also, a study by Ntoelasal [NCOO04] reports that “the link structure of

the Web is significantly more dynamic than the contents on the Web. Every aleelt 25% new links are

created”. We explore a number of strategies to deal with the pages fotimeldénrrent crawl which were not

found in the previous one:

Historical-pagerank-omniscientNew pages are assigned a Pagerank taken from an oracle that knows
the full graph.

Historical-pagerank-random New pages are assigned a Pagerank value selected uniformly at random
among the values obtained in previous crawl.

Historical-pagerank-zero New pages are assigned Pagerank zero, i.e., old pages are crast|eddir
new pages are crawled.

Historical-pagerank-parent New pages are assigned the Pagerank of the parent page (the page in
which the link was found) divided by the number of out-links of the paregep

4.3.3 Strategy with all the information

Omniscient: this strategy can query an “oracle” which knows the complete Web graghinas calculated
the actual Pagerank of each page. Every timeotheiscienstrategy needs to prioritize a download, it asks
the oracle and downloads the page with the highest ranking in its frontiée. tNat this strategy is bound to
the same restrictions as the others, and can only download a page if it éadyatftownloaded a page that
points to it.

4.3.4 Evaluation

Our importance metric is Pagerank. Thus, for evaluating different siestege calculated the Pagerank
value of every page in each Web graph and used those values to catbelatelution of the Pagerank as
the simulated crawl goes by.

We used three measures of performance: cumulative PageranligeRagerank and Kendaliis

Cumulative Pagerank: we plotted the sum of the Pagerank of downloaded pages at differens pbin
the crawling process. The strategies which are able to reach valuesacthedarget total value.Q faster are
considered the most efficient ones. A strategy which selects randaes pagrawl will produce a diagonal
line in this graph.
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Figure 4.3: Cumulative Pagerank in theCL and. GR domain, showing almost exactly the
same distribution; these curves represents an upper boutftk@umulative Pagerank of any
crawling strategy.

There is an upper bound on how well this can be done, and it is giverebgisgtribution of Pagerank,
which is shown in Figure 4.3.

The results for the different strategies are shown in Figures 4.4 anth4tiis simulation we are using
r =1, one robot at a time, because we are not interested in the time for downgahd full Web, but just in
the crawling order.
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Figure 4.4: Comparison of cumulative Pagerank vs retrieved pages hétHifferent strategies,
excluding the historical strategies, in the Chilean sardplkéing April and May 2005.
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Obviously theomniscientas the best performance, but it is in some sense too greedy becatlse by
last stages of the crawl it performs close to random.

On the other endhacklink-countand partial-pagerankare the worst strategy according to cumulative
Pagerank, and perform worser than a random crawl. They both teget &tuck in pages that are locally
optimal, and fail to discover other pages.

Breadth-firstis close to the best strategies for the first 20-30% of pages, but aftdt bewomes less
efficient.

The strategiedatch-pageranklarger-sites-firstand OPIC have a better performance than the other
strategies, with an advantage towalaiger-sites-firstwhen the desired coverage is high. These strategies
can retrieve about half of the Pagerank value of their domains downhtpadiy around 20-30% of the pages.

We tested thdiistorical-pageranlistrategies in the Greek Web graph of September, using the Pagerank
calculated in May for guiding the crawl — we are using Pagerank that is 4hsa@td. We were able to use
the Pagerank of the old crawl (May) for only 55% of the pages, as ther d&t6 of pages were new pages,

or were not crawled in May.

Figure 4.6 shows results for a number of ways of dealing with the aboveodp@ges along with results
for the same Web graph but using {@®IC strategy for comparison. These results show that May Pagerank
values are not detrimental to the crawl of September.
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Figure 4.6: Comparison of cumulative Pagerank using the historicateflies against tham-
niscientandOPIC strategies, for a crawl of the Greek Web in September 200dg iFagerank
information from May 2004.
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The historical-pagerank-randonstrategy has a good performance, despite of the fact that the Web
graph is very dynamic [NCOO04], and than on average it is difficult to estitha@t®agerank using historical
information [CA04]. A possible explanation is that the ordering of pageRBdgerank changes more slowly
and in particular the pages with high ranking have a more stable position inrtkiegahan the pages with
low ranking, which exhibit a larger variability. Also, as Pagerank is bidea@rds old pages [BYSJCO02],
55% of pages that already existed in May account for 72% of the totarBalkyin September.

Average Cumulative Pagerank: this is the average across the entire crawl. As we have normalized
the cumulative Pagerank as a fraction of documents, it is equivalent toghaiader the curves shown in
Figures 4.4 and 4.5. The result is presented in Table 4.2, in which we kheax&gad the strategies across

the four collections (note that théstorical-pageranistrategies were tested in a single pair of collections, so
they values are not averaged).

Kendall's Tau: this is a metric for the correlation between two ranked lists, which basically mesasu
the number of pairwise inversions in the two lists [Ken70]. Two identical liste ha= 1, while two totally
uncorrelated lists have= 0 and reversed lists hawre= —1. We calculated this coefficient for a 5000-page

sample of the page ordering in each strategy, against a list of the sanm® qrdgeed by Pagerank. The
results are shown in Table 4.2.

Table 4.1: Comparison of the scheduling strategies, consideringageecumulative Pagerank
during the crawl and Kendall's of the page ordering against the optimal ordering.

Strategy Avg. Pagerank 1
Backlink-count 0.4952 0.0157
Partial-pagerank 0.5221 0.0236
Breadth-first 0.6425 0.1293
Batch-pagerank 0.6341 0.1961
OPIC 0.6709 0.2229
Larger-sites-first 0.6749 0.2498
Historical-pagerank-zero 0.6758 0.3573
Historical-pagerank-random 0.6977 0.3689
Historical-pagerank-parent 0.7074 0.3520
Historical-pagerank-omni. 0.7731 0.6385
Omniscient 0.7427 0.6504

We attempted to measure precision, for instance, how many page downteauscassary to get the
top 10% of pages. However, this kind of measure is very sensitive to saraltions, such as having a single
high-quality page downloaded by the end of the crawl.
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4.3.5 Multiple robots

The effect of increasing the number of robotg te 64 andr = 256 is shown in Figure 4.7. Observing the
rate of growth of the cumulative Pagerank sum, the results shoviatigatr-sites-firstis not affected by the
number of robots; bubreadth-firstimproves as the number of robots increases, because the crawlesgather
information from many sources at the same time, and thus can find pagesvatr alpth earlier.
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Figure 4.7: Cumulative sum of Pagerank values vs number of retrieved pegles. Strategies
larger-sites-firstandbreadth-first case for = 1,r = 64 andr = 256 robots.

Finally, Table 4.3 shows the effects in retrieval time when we increase thearwhiobots for different
bandwidths, using thiarger-sites-firsistrategy.

The results show that using more robots increases the rate of downlpadesd up to a certain point,
and when bandwidth is saturated, it is pointless to use more robots (see Bigyr Note that this result
arises from a simulation that does not consider CPU processing time, dimg) awlore robots increases the
performance monotonically.

In a multi-threaded crawler, using more robots than necessary actuatagdes the performance due
to the load from context switches. This is not the case of the WIRE crawlech is single threaded and
uses an array of sockets, as explained in Se&@ibithere are no context switches, and handling even a large
amount of sockets is not very demanding in terms of processing poweun, iflle sockets do not require
processing.
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Table 4.2: Predicted speed-ups for parallelism in the crawling precesing simulation and

the Larger-sites-firsstrategy.

Bandwidth r=1 r=64 r =256
[bytes/second]

200 0.2 1.6 3.0
2,000 0.7 3.8 16.0
20,000 1.0 27.0 83.3

200,000 1.0 43.0 114.1
2,000,000 1.0 54.3 204.3
20,000,000 1.0 54.6 220.1
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Figure 4.8: Predicted speed-up at different bandwidths, showing sdat growth and satura-
tion. Note that the scale for the bandwidth is logarithmic.

4.4 Short-term scheduling

When crawling, especially in distributed crawling architectures, it is typicaldrk by downloading groups
of pages, or to make periodic stops for saving a checkpoint with thergwstatus of the crawler. These
groups of pages or “batches” are fixed-size grougs pages, chosen according to the long-term scheduling

policy.
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We have shown the distribution of pages on sites for the whole Web in FRftiren Figure 4.9 we
show page distribution on sites for a typical batch, obtained at the middle cfdiag. The distribution is
slightly less skewed than for the entire Web, as Web sites with very few @agesompleted early in the
crawl, but it is nevertheless very skewed.
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Figure 4.9: Distribution of Web pages to Web sites in a typical batch erthiddle of the crawl
using breadth-first crawling.

Even when a batch involves many Web sites, if a large fraction of those Wésbhsis very few pages
available for the crawler, then quickly many of the robots will be idle, as tvim@t®cannot visit the same
Web site at the same time. Figure 4.10 shows how the effective number @$ inbolved in the retrieval of
a batch drops dramatically as the crawl goes by. In this figure, the nurib&bbats actually downloading
pages varies during the crawl, as a robots must waivfseconds before downloading the next page from a
site, and if there are no other sites available, then that robot becomesénacti

An approach to overcome this problem is to try to reduce waiting time. This cdoreeby increasing
¢ and letting robots get more than one page every time they connect to a Web sefigure 4.11 we show
results for a case in which robots can download up+0100 pages per site in a single connection, using the
HTTP/1.1Keep- al i ve feature.

Downloading several pages per connection resulted in significantgsainnterms of the total time
needed for downloading the pages, as more robots are kept actadoioger part of the crawl. In the case
of the small bandwidth scenario, the time to download a batch was redueecbrout 33 to 29 hours, and
in the case of a large bandwidth scenario, the time was reduced from @todihours.
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Figure 4.10: Number of active robots vs batch’s total retrieval time. TWe curves are for
small (2 Kb/s) and large (20 Kb/s) bandwidth. In either casest robots are idle most of the
time, and the number of active robots varies as robots gietetl and deactivated very often
during the crawl.

Note that, as most of the latency of a download is related to the connection timelpaoling multiple
small pages with the same connection is very similar to downloading just a larQep¥de, therefore,
increasing the number of pages that are downloaded in the same d¢anmiscequivalent to reducing w, the
waiting time between page&educingw in practice can be very difficult, because it can be perceived as a
threat by Web site administrators, but increasing the number of pagedadaled by connection can be a
situation in which both search engines and Web sites win.

Another heuristic that can be used in practice is monitoring the number ofihtessed while down-
loading pages, and stop the current crawl cycle if this number is too logesPthat were not crawled are
downloaded in the next batch. This also suggests preparing the nelxtdigtages in advance, and start the
next batch before the current batch ends on when network usage loke@w a certain threshold.

4.5 Downloading the real Web

In this section we describe two experiments for testinganger-sites-firstscheduling policy in a real Web
crawler.
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Figure 4.11: Number of active robots vs batch’s total retrieval time. TWe curves are for
small (2 Kb/s) and large (20 Kb/s) bandwidth. In this casetslare allowed to request up to
100 pages with the same connection, that is the default marifor the Apache Web server.
In this case there is much less variability in the number tifacobots.

45.1 Experiment1

We started with a list of Web sites registered with the Chilean Network Inform&@nter [nic04], and ran
the crawler during 8 days with tHarger-sites-firststrategy. We visited 3 million pages in over 50,000 Web
sites, downloading 57 GB of data.

We ran the crawler in batches of upKo= 100 000 pages, using up to= 1000 simultaneous network
connections, and we waited at least 15 seconds between accesses to the same Web site. The crawler used
both therobot s. t xt file and meta-tags in Web pages according to the robot exclusion prot¢es®$].

We did not us&eep- al i ve for this crawl, sac = 1.

We calculated the Pagerank of all the pages in the collection when the cravelingpmpleted, and then
measured how much of the total Pagerank was covered during eacf ldayesults are shown in Figure
4.12.

We can see that by the end of the second day, 50% of the pages wernedded, and about 80% of the
total Pagerank was achieved; according to the probabilistic interpretdtagerank, this means we have
downloaded pages in which a random surfer limited to this collection woulddsp@¥ of its time. By the
end of day four, 80% of the pages were downloaded, and more tharBtfb Pagerank, so in general this
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Figure 4.12: Cumulative sum of Pagerank values vs day of crawl, on an bctaaler using
the larger-sites-firststrategy. The fraction of retrieved Pagerank is larger thanfraction of
retrieved documents during the entire crawl.

approach leads to “good” pages early in the crawl. In fact, the avétagerank decreased dramatically after
a few days, as shown in Figure 4.13, and this is consistent with the finditNgark and Wiener [NWOL1].

It is reasonable to suspect that pages with good Pagerank are fatngust because they are mostly
home pages or are located at very low depths within Web sites. There isdirafeinverse relation between
Pagerank and depth in the first few levels, but 3-4 clicks away from e¢heehpage the correlation is very
low, as can be seen in Figure 4.14. There are many home pages with vePagevank as many of them
have very few or no in-links: we were able to found those pages only diy tgistration under thecl
top-level domain database.

Regarding the relationship between the expected values of the simulationeaploisérved values, we
plotted the cumulative Pagerank versus the number of pages downl@adkdbtained Figure 4.15. The
results are consistent, and the actual crawl performed slightly better thaimhblated crawl.
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4.5.2 Experiment 2

We also performed two actual crawls using WIRE [BYCO02] in two conseeutieeks in the GR domain,
usingBreadth-firstand Larger-sites-first We ran the crawler in a single Intel PC of 3.06GHz with 1Gb of
RAM under Linux, in batches of up to 200,000 pages, using up=%dl000 simultaneous network connec-
tions, withw = 5 seconds between accesses to the same Web sitey artb for sites with less than 100
pages.

For this experiment, we focused in the time variable, as it is worthless to dodvplages in the right
order if they cannot be downloaded fast. We calculated the Pageratikioé pages in the collection when
the crawling was completed and then measured how much of the total Pageaardovered during each
batch. The results are shown in Figure 4.16.
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02F & PRLarger-sites-first——e——
. @ Docs.Breadth-first -+
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0 1 2 3 4
Day of crawling

Cumulative Fraction

Figure 4.16: Cumulative Pagerank (PR) and cumulative fraction of doauséDocs.) of an
actual crawl of theGRdomain using two strategieBreadth-firstandLarger-sites-first

Both crawling strategies are efficient in terms of downloading the valuallespearly, bularger-sites-
first is faster in both downloading documents and downloading good pages stfdtisgy “saves” several
small Web sites for the middle and end part of the crawl and interleaves Whelsesites with larger Web
sites to continue downloading important pages at a fast pace.
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4.6 Conclusions

Most of the strategies tested were able to download important pages firsghos in [BSV04], even a

random strategy can perform well on the Web, in terms that a random wattteo\Web is biased towards
pages with high Pagerank [HHMNOO]. However, there are differeint@ow quickly high-quality pages are
found depending on the ordering of pages.

The historical-pagerankamily of strategies were very good, and in case of no historical information
available,OPIC andlarger-sites-firstare our recommendation8readth-firsthas a bad performance com-
pared with these strategidsatch-pagerankequires to do a full Pagerank computation several times during
the crawl, which is computationally very expensive, and the performamm [setter than simpler strategies.

Notice that thdarger-sites-firsistrategy has practicals advantage overQIRtC strategy. First, requires
less computation time, and also does not require knowledge of all in-linksitea jgage a®PIC does. The
later is relevant when we think of distributed crawlers as no communicatiorebataomputers is required
to exchange these data during the crawling process. [HEnger-sites-firsthas better scalability making it
more suitable for large scale distributed crawlers.

Also, our simulation results show that attempting to retrieve as many pages fgirerasite ¢ >>
1), allows the crawler to effectively amortize the waiting timebefore visiting the same site again. This
certainly helps to achieve a better utilization of the available bandwidth, andot$ fgo both the search
engine and the Web site administrator.

Experiments with a real crawl using therger-sites-firststrategy on the ever-changing Web validated
our conclusions whereas simulation was the only way to ensure that alg#satensidered were compared
under the same conditions.

We verified that after a few days, the quality of the retrieved pages is lihaarat the beginning of the
crawl. At some point, and with limited resources, it could be pointless to contiawding, but, when is the
right time to stop a crawl? The next chapter deals with this subject throughlsranttéactual data from Web
usage.
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