
Chapter 4

Scheduling Algorithms for Web Crawling

In the previous chapter, we described the general model of our Web crawler. In this chapter, we deal with the

specific algorithms for scheduling the visits to the Web pages.

We started with a large sample of the Chilean Web that was used to build a Web graph and run a crawler

simulator. Several strategies were compared using the simulator to ensure identical conditions during the

experiments.

The rest of this chapter is organized as follows: Section 4.1 introduces our experimental framework and

Section 4.2 the simulation parameters. Sections 4.3 and 4.4 compare different scheduling policies for long-

and short-term scheduling. In Section 4.5 we test one of these policies using a real Web crawler, and the last

section presents our conclusions.

Portions of this chapter were presented in [CMRBY04].

4.1 Experimental setup

We tested several scheduling policies in two different datasets corresponding to Chilean and Greek Web

pages using a crawler simulator. This section describes how the dataset and how the simulator works.

4.1.1 Datasets: .cl and .gr

Dill et al. [DKM +02] studied several sub-sets of the Web, and found that the Web graphis self-similar in

several senses and at several scales, and that this self-similarity is pervasive, as it holds for a number of

different parameters. Top-level domains are useful because they represents pages sharing a common cultural

context; we consider that they are more useful than large Web sites because pages in a Web site are more

homogeneous. Note than a large sub-set of the whole Web (and any non-closed subset of the Web) is always

biased by the strategy used to crawl it.
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We worked with two datasets that correspond to pages under the.cl (Chile) and.gr (Greek) top-level

domains. We downloaded pages using the WIRE crawler [BYC02] in breadth-first mode, including both

static and dynamic pages. While following links, we stopped at depth 5 for dynamic pages and 15 for static

pages, and we downloaded up to 25,000 pages from each Web site.

We made two complete crawls on each domain, in April and May for Chile, and in May and September

for Greece. We downloaded about 3.5 million pages in the Greek Web and about 2.5 million pages in the

Chilean Web. Some demographic information about the two countries is presented in Table?? (page??).

Both datasets are comparable in terms of the number of Web pages, but wereobtained from countries with

wide differences in terms of geography, language, demographics, history, etc.

4.1.2 Crawler simulator

Using this data, we created a Web graph and ran a simulator by using different scheduling policies on this

graph. This allowed us to compare different strategies under exactly the same conditions.

The simulator1 models:

• The selected scheduling policy, including the politeness policy.

• The bandwidth saturation of the crawler Internet link.

• The distribution of the connection speed and latency from Web sites, which was obtained during the

experiment described in Section?? (page??).

• The page sizes, which were obtained during the crawl used to build the Webgraph.

We considered a number of scheduling strategies. Their design is based on a heap priority queue whose

nodes represent sites. For each site-node we have another heap with the pages of the Web site, as depicted in

Figure 4.1.

At each simulation step, the scheduler chooses the top Website from the queue of Web sites and a

number of pages from the top of the corresponding queue of Web pages. This information is sent to a

module that simulates downloading pages from that Website.

4.2 Simulation parameters

The parameters for our different scheduling policies are the following:

1The crawler simulator used for this experiment was implemented by Dr. Mauricio Marin and Dr. Andrea Rodriguez, and

designed by them and the author of this thesis based on the design of the WIRE crawler. Details about the crawler simulator are not

given here, as they are not part of the work of this thesis.
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Figure 4.1: Queues used in the crawling simulator. We tested the scheduling policies using a

structure with two levels: one queue for Web sites and one queue for the Web pages of each

Web site.

• The policy for ordering the queue of Web sites, related to long-term scheduling.

• The policy for ordering the queues of Web pages, related to short-term scheduling.

• The intervalw in seconds between requests to a single Web site.

• The number of pagesc downloaded for each connection when re-using connections with the HTTP

Keep-alive feature.

• The numberr of maximum simultaneous connections, i.e.: the degree of parallelization. Although we

used a large degree of parallelization, we restricted the robots to never open more than one connection

to a Web site at a given time.

4.2.1 Interval between connections (w)

As noted in Section??, a waiting time ofw= 60 seconds is too large, as it would take too long to crawl large

Web sites. Instead, we usew = 15 seconds in our experiments.

Liu et al. [Liu98] show that total time of a page download is almost always under 10 seconds. We

ran our own experiments and measured that for sequential transfers (which are usually faster than parallel

transfers) 90% of the pages were transfered in less than 1.5 seconds,and 95% of the pages in less than 3

seconds, as shown in Figure 4.2.

From the total time, latency is usually larger than the actual transfer time. This makes the situation even

more difficult than what was shown in Figure??, as the time spent waiting cannot be amortized effectively.
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Figure 4.2: Total download time for sequential transfer of Web pages; this data provides from

experiments in the Chilean Web and was used as an input for theWeb crawler simulator.

4.2.2 Number of pages per connection (c)

We have observed the log files of several Web servers during this thesis. We have found that all the Web

crawlers used by major search engines download only one page per each connection, and do not re-use the

HTTP connection. We considered downloading multiple pages in the same connection to reduce latency, and

measured the impact of this technique in the quality of the scheduling.

The protocol for keeping the connection open was introduced as theKeep-alive feature in HTTP/1.1

[FGM+99]; the configuration of the Apache Web server enables this feature bydefault and allows for a

maximum of 100 objects downloaded per connection, with a timeout of 15 seconds between requests, so

when usingc > 1 in practice, we should also setw≤ 15 to prevent the server from closing the connection.

4.2.3 Number of simultaneous requests (r)

All of the robots currently used by Web search engines have a high degree of parallelization, downloading

hundreds or thousands of pages at a given time. We usedr = 1 (serialization of the requests), as a base case,

r = 64 andr = 256 during the simulations, andr = 1000 during the actual crawl.

As we never open more than one connection to a given Web site,r is bounded by the number of Web

sites available for the crawler, i.e.: the number of Web sites that have unvisitedpages. If this number is too

small, we cannot make use of a high degree of parallelization and the crawlerperformance in terms of pages

per second drops dramatically.
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The scarcity of large Web sites to download from is especially critical at the end of a large crawl, when

we have already downloaded all the public pages from most of the Web sites. When downloading pages in

batches, this problem can also arise by the end of a batch, so the pages should be carefully selected to include

pages from as many Web sites as possible. This should be a primary concern when parallelism is considered.

4.3 Long-term scheduling

We tested different strategies for crawling pages in the stored Web graph. The complete crawl on the real

Chilean or Greek Web takes about 8 days, so for testing many strategies it ismuch more efficient to use the

crawler simulator. The simulator also help us by reproducing the exact scenario each time a strategy is tested.

Actual retrieval time for Web pages is simulated by considering the observedlatency and transfer rate

distribution, the observed page size for every downloaded page, and the saturation of bandwidth, which is

related to the speed and number of active connections at a given time of the simulation.

For evaluating the different strategies, we calculated beforehand the Pagerank value of every page in the

whole Web sample and used those values to calculate the cumulative sum of Pagerank as the simulated crawl

goes by. We call this measure an “oracle” score since in practice it is not known until the complete crawl is

finished. The strategies that are able to reach values close to the target total value faster are considered the

most efficient ones.

There are other possible evaluation strategies for a Web crawler, but any strategy must consider some

form of global ranking of the Web pages, to measure how fast ranking isaccumulated. This global ranking

could be:

• Number of page views, but this is hard to obtain in practice.

• Number of clicks on a search engine, but a search engine’s result setrepresents only a small portion of

the total Web pages.

• A combination of link and text analysis, but there are no established measures of quality that accom-

plish this without a specific query, and we want to assert overall quality, not quality for a specific

topic.

• User votes or ranking.

However, we decided to use Pagerank as the global measure of quality because it can be calculated

automatically and it has a non-zero value for each page.

We consider three types of strategies regarding how much information they can use: no extra informa-

tion, historical information, and all the information. A random ordering can be considered a baseline for

comparison. In that case, the Pagerank grows linearly with the number of pages crawled.
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All of the strategies are bound to the following restrictions:w = 15 waiting time,c = 1 pages per

connection,r simultaneous connections to different Web sites, and no more than one connection to each

Web site at a time. In the first set of experiments we assume a situation of high-bandwidth for the Internet

link, i.e., the bandwidth of the Web crawlerB is larger than any of the maximum bandwidths of the Web

serversBMAX
i .

4.3.1 Strategies with no extra information

These strategies only use the information gathered during the current crawling process.

Breadth-first Under this strategy, the crawler visits the pages in breadth-first ordering. It starts by

visiting all the home pages of all the “seed” Web sites, and Web page heaps are kept in such a way that new

pages added go at the end. This is the same strategy tested by Najork and Wiener [NW01], which in their

experiments showed to capture high-quality pages first.

Backlink-count This strategy crawls first the pages with the highest number of links pointing toit,

so the next page to be crawled is the most linked from the pages already downloaded. This strategy was

described by Choet al. [CGMP98].

Batch-pagerankThis strategy calculates an estimation of Pagerank, using the pages seen sofar, every

K pages downloaded. The nextK pages to download are the pages with the highest estimated Pagerank. We

usedK = 100,000 pages, which in our case gives about 30 to 40 Pagerank calculations during the crawl.

This strategy was also studied by Choet al. [CGMP98], and it was found to be better than backlink-count.

However, Boldiet al. [BSV04] showed that the approximations of Pagerank using partial graphs can be very

inexact.

Partial-pagerank This is like batch-pagerank, but in between Pagerank re-calculations, a temporary

pagerank is assigned to new pages using the sum of the Pagerank of the pages pointing to it divided by the

number of out-links of those pages.

OPIC This strategy is based on OPIC [APC03], which can be seen as a weightedbacklink-count strat-

egy. All pages start with the same amount of “cash”. Every time a page is crawled, its “cash” is split among

the pages it links to. The priority of an uncrawled page is the sum of the “cash” it has received from the

pages pointing to it. This strategy is similar to Pagerank, but has no random links and the calculation is not

iterative – so it is much faster.

Larger-sites-first The goal of this strategy is to avoid having too many pending pages in any Website,

to avoid having at the end only a small number of large Web sites that may lead to spare time due to the “do

not overload” rule. The crawler uses the number of un-crawled pagesfound so far as the priority for picking

a Web site, and starts with the sites with the larger number of pending pages. This strategy was introduced

in [CMRBY04] and was found to be better than breadth-first.
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4.3.2 Strategies with historical information

These strategies use the Pagerank of a previous crawl as an estimation ofthe Pagerank in this crawl, and

start in the pages with a high Pagerank in the last crawl. This is only an approximation because Pagerank

can change: Cho and Adams [CA04] report that the average relative error for estimating the Pagerank four

months ahead is about 78%. Also, a study by Ntoulaset. al [NCO04] reports that “the link structure of

the Web is significantly more dynamic than the contents on the Web. Every week,about 25% new links are

created”. We explore a number of strategies to deal with the pages found inthe current crawl which were not

found in the previous one:

Historical-pagerank-omniscientNew pages are assigned a Pagerank taken from an oracle that knows

the full graph.

Historical-pagerank-random New pages are assigned a Pagerank value selected uniformly at random

among the values obtained in previous crawl.

Historical-pagerank-zeroNew pages are assigned Pagerank zero, i.e., old pages are crawled first, then

new pages are crawled.

Historical-pagerank-parent New pages are assigned the Pagerank of the parent page (the page in

which the link was found) divided by the number of out-links of the parent page.

4.3.3 Strategy with all the information

Omniscient: this strategy can query an “oracle” which knows the complete Web graph and has calculated

the actual Pagerank of each page. Every time theomniscientstrategy needs to prioritize a download, it asks

the oracle and downloads the page with the highest ranking in its frontier. Note that this strategy is bound to

the same restrictions as the others, and can only download a page if it has already downloaded a page that

points to it.

4.3.4 Evaluation

Our importance metric is Pagerank. Thus, for evaluating different strategies, we calculated the Pagerank

value of every page in each Web graph and used those values to calculatethe evolution of the Pagerank as

the simulated crawl goes by.

We used three measures of performance: cumulative Pagerank, average Pagerank and Kendall’sτ.

Cumulative Pagerank: we plotted the sum of the Pagerank of downloaded pages at different points of

the crawling process. The strategies which are able to reach values closeto the target total value 1.0 faster are

considered the most efficient ones. A strategy which selects random pages to crawl will produce a diagonal

line in this graph.
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Figure 4.3: Cumulative Pagerank in the.CL and .GR domain, showing almost exactly the

same distribution; these curves represents an upper bound on the cumulative Pagerank of any

crawling strategy.

There is an upper bound on how well this can be done, and it is given by the distribution of Pagerank,

which is shown in Figure 4.3.

The results for the different strategies are shown in Figures 4.4 and 4.5;in this simulation we are using

r = 1, one robot at a time, because we are not interested in the time for downloading the full Web, but just in

the crawling order.
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Figure 4.4: Comparison of cumulative Pagerank vs retrieved pages with the different strategies,

excluding the historical strategies, in the Chilean sampleduring April and May 2005.
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Figure 4.5: Comparison of cumulative Pagerank vs retrieved pages with the different strategies,

excluding the historical strategies, in the Greek sample during May and September 2005.
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Obviously theomniscienthas the best performance, but it is in some sense too greedy because bythe

last stages of the crawl it performs close to random.

On the other end,backlink-countandpartial-pagerankare the worst strategy according to cumulative

Pagerank, and perform worser than a random crawl. They both tend toget stuck in pages that are locally

optimal, and fail to discover other pages.

Breadth-firstis close to the best strategies for the first 20-30% of pages, but after that it becomes less

efficient.

The strategiesbatch-pagerank, larger-sites-firstand OPIC have a better performance than the other

strategies, with an advantage towardslarger-sites-firstwhen the desired coverage is high. These strategies

can retrieve about half of the Pagerank value of their domains downloading only around 20-30% of the pages.

We tested thehistorical-pagerankstrategies in the Greek Web graph of September, using the Pagerank

calculated in May for guiding the crawl – we are using Pagerank that is 4 months old. We were able to use

the Pagerank of the old crawl (May) for only 55% of the pages, as the other 45% of pages were new pages,

or were not crawled in May.

Figure 4.6 shows results for a number of ways of dealing with the above 45%of pages along with results

for the same Web graph but using theOPICstrategy for comparison. These results show that May Pagerank

values are not detrimental to the crawl of September.
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Figure 4.6: Comparison of cumulative Pagerank using the historical strategies against theom-

niscientandOPICstrategies, for a crawl of the Greek Web in September 2004, using Pagerank

information from May 2004.
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The historical-pagerank-randomstrategy has a good performance, despite of the fact that the Web

graph is very dynamic [NCO04], and than on average it is difficult to estimatethe Pagerank using historical

information [CA04]. A possible explanation is that the ordering of pages byPagerank changes more slowly

and in particular the pages with high ranking have a more stable position in the ranking than the pages with

low ranking, which exhibit a larger variability. Also, as Pagerank is biasedtowards old pages [BYSJC02],

55% of pages that already existed in May account for 72% of the total Pagerank in September.

Average Cumulative Pagerank: this is the average across the entire crawl. As we have normalized

the cumulative Pagerank as a fraction of documents, it is equivalent to the area under the curves shown in

Figures 4.4 and 4.5. The result is presented in Table 4.2, in which we have averaged the strategies across

the four collections (note that thehistorical-pagerankstrategies were tested in a single pair of collections, so

they values are not averaged).

Kendall’s Tau: this is a metric for the correlation between two ranked lists, which basically measures

the number of pairwise inversions in the two lists [Ken70]. Two identical lists have τ = 1, while two totally

uncorrelated lists haveτ = 0 and reversed lists haveτ = −1. We calculated this coefficient for a 5000-page

sample of the page ordering in each strategy, against a list of the same pages ordered by Pagerank. The

results are shown in Table 4.2.

Table 4.1: Comparison of the scheduling strategies, considering average cumulative Pagerank

during the crawl and Kendall’sτ of the page ordering against the optimal ordering.

Strategy Avg. Pagerank τ

Backlink-count 0.4952 0.0157

Partial-pagerank 0.5221 0.0236

Breadth-first 0.6425 0.1293

Batch-pagerank 0.6341 0.1961

OPIC 0.6709 0.2229

Larger-sites-first 0.6749 0.2498

Historical-pagerank-zero 0.6758 0.3573

Historical-pagerank-random 0.6977 0.3689

Historical-pagerank-parent 0.7074 0.3520

Historical-pagerank-omni. 0.7731 0.6385

Omniscient 0.7427 0.6504

We attempted to measure precision, for instance, how many page downloads are necessary to get the

top 10% of pages. However, this kind of measure is very sensitive to small variations, such as having a single

high-quality page downloaded by the end of the crawl.
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4.3.5 Multiple robots

The effect of increasing the number of robots tor = 64 andr = 256 is shown in Figure 4.7. Observing the

rate of growth of the cumulative Pagerank sum, the results show thatlarger-sites-firstis not affected by the

number of robots; butbreadth-firstimproves as the number of robots increases, because the crawler gathers

information from many sources at the same time, and thus can find pages at a lower depth earlier.
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Figure 4.7: Cumulative sum of Pagerank values vs number of retrieved Webpages. Strategies

larger-sites-firstandbreadth-first, case forr = 1, r = 64 andr = 256 robots.

Finally, Table 4.3 shows the effects in retrieval time when we increase the number of robots for different

bandwidths, using thelarger-sites-firststrategy.

The results show that using more robots increases the rate of download ofpages up to a certain point,

and when bandwidth is saturated, it is pointless to use more robots (see Figure 4.8). Note that this result

arises from a simulation that does not consider CPU processing time, and adding more robots increases the

performance monotonically.

In a multi-threaded crawler, using more robots than necessary actually decreases the performance due

to the load from context switches. This is not the case of the WIRE crawler,which is single threaded and

uses an array of sockets, as explained in Section??: there are no context switches, and handling even a large

amount of sockets is not very demanding in terms of processing power. Also, idle sockets do not require

processing.
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Table 4.2: Predicted speed-ups for parallelism in the crawling process, using simulation and

theLarger-sites-firststrategy.

Bandwidth r = 1 r = 64 r = 256

[bytes/second]

200 0.2 1.6 3.0

2,000 0.7 3.8 16.0

20,000 1.0 27.0 83.3

200,000 1.0 43.0 114.1

2,000,000 1.0 54.3 204.3

20,000,000 1.0 54.6 220.1
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Figure 4.8: Predicted speed-up at different bandwidths, showing sub-linear growth and satura-

tion. Note that the scale for the bandwidth is logarithmic.

4.4 Short-term scheduling

When crawling, especially in distributed crawling architectures, it is typical towork by downloading groups

of pages, or to make periodic stops for saving a checkpoint with the current status of the crawler. These

groups of pages or “batches” are fixed-size groups ofK pages, chosen according to the long-term scheduling

policy.
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We have shown the distribution of pages on sites for the whole Web in Figure??; on Figure 4.9 we

show page distribution on sites for a typical batch, obtained at the middle of thecrawl. The distribution is

slightly less skewed than for the entire Web, as Web sites with very few pagesare completed early in the

crawl, but it is nevertheless very skewed.
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Figure 4.9: Distribution of Web pages to Web sites in a typical batch in the middle of the crawl

using breadth-first crawling.

Even when a batch involves many Web sites, if a large fraction of those Web sites has very few pages

available for the crawler, then quickly many of the robots will be idle, as two robots cannot visit the same

Web site at the same time. Figure 4.10 shows how the effective number of robots involved in the retrieval of

a batch drops dramatically as the crawl goes by. In this figure, the number of robots actually downloading

pages varies during the crawl, as a robots must wait forw seconds before downloading the next page from a

site, and if there are no other sites available, then that robot becomes inactive.

An approach to overcome this problem is to try to reduce waiting time. This can bedone by increasing

c and letting robots get more than one page every time they connect to a Web server. In figure 4.11 we show

results for a case in which robots can download up toc= 100 pages per site in a single connection, using the

HTTP/1.1Keep-alive feature.

Downloading several pages per connection resulted in significant savings in terms of the total time

needed for downloading the pages, as more robots are kept active fora longer part of the crawl. In the case

of the small bandwidth scenario, the time to download a batch was reduced from about 33 to 29 hours, and

in the case of a large bandwidth scenario, the time was reduced from 9 hours to 3 hours.
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Figure 4.10: Number of active robots vs batch’s total retrieval time. Thetwo curves are for

small (2 Kb/s) and large (20 Kb/s) bandwidth. In either case,most robots are idle most of the

time, and the number of active robots varies as robots get activated and deactivated very often

during the crawl.

Note that, as most of the latency of a download is related to the connection time, downloading multiple

small pages with the same connection is very similar to downloading just a large Web page, therefore,

increasing the number of pages that are downloaded in the same connection is equivalent to reducing w, the

waiting time between pages. Reducingw in practice can be very difficult, because it can be perceived as a

threat by Web site administrators, but increasing the number of pages downloaded by connection can be a

situation in which both search engines and Web sites win.

Another heuristic that can be used in practice is monitoring the number of threads used while down-

loading pages, and stop the current crawl cycle if this number is too low. Pages that were not crawled are

downloaded in the next batch. This also suggests preparing the next batch of pages in advance, and start the

next batch before the current batch ends on when network usage drops below a certain threshold.

4.5 Downloading the real Web

In this section we describe two experiments for testing thelarger-sites-firstscheduling policy in a real Web

crawler.
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Figure 4.11: Number of active robots vs batch’s total retrieval time. Thetwo curves are for

small (2 Kb/s) and large (20 Kb/s) bandwidth. In this case robots are allowed to request up to

100 pages with the same connection, that is the default maximum for the Apache Web server.

In this case there is much less variability in the number of active robots.

4.5.1 Experiment 1

We started with a list of Web sites registered with the Chilean Network InformationCenter [nic04], and ran

the crawler during 8 days with thelarger-sites-firststrategy. We visited 3 million pages in over 50,000 Web

sites, downloading 57 GB of data.

We ran the crawler in batches of up toK = 100,000 pages, using up tor = 1000 simultaneous network

connections, and we waited at leastw= 15 seconds between accesses to the same Web site. The crawler used

both therobots.txt file and meta-tags in Web pages according to the robot exclusion protocol [Kos95].

We did not useKeep-alive for this crawl, soc = 1.

We calculated the Pagerank of all the pages in the collection when the crawlingwas completed, and then

measured how much of the total Pagerank was covered during each day.The results are shown in Figure

4.12.

We can see that by the end of the second day, 50% of the pages were downloaded, and about 80% of the

total Pagerank was achieved; according to the probabilistic interpretation of Pagerank, this means we have

downloaded pages in which a random surfer limited to this collection would spend 80% of its time. By the

end of day four, 80% of the pages were downloaded, and more than 95%of the Pagerank, so in general this
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Figure 4.12: Cumulative sum of Pagerank values vs day of crawl, on an actual crawler using

the larger-sites-firststrategy. The fraction of retrieved Pagerank is larger thanthe fraction of

retrieved documents during the entire crawl.

approach leads to “good” pages early in the crawl. In fact, the averagePagerank decreased dramatically after

a few days, as shown in Figure 4.13, and this is consistent with the findings of Najork and Wiener [NW01].

It is reasonable to suspect that pages with good Pagerank are found early just because they are mostly

home pages or are located at very low depths within Web sites. There is, indeed, an inverse relation between

Pagerank and depth in the first few levels, but 3-4 clicks away from the home page the correlation is very

low, as can be seen in Figure 4.14. There are many home pages with very lowPagerank as many of them

have very few or no in-links: we were able to found those pages only by their registration under the.cl

top-level domain database.

Regarding the relationship between the expected values of the simulation and the observed values, we

plotted the cumulative Pagerank versus the number of pages downloaded,and obtained Figure 4.15. The

results are consistent, and the actual crawl performed slightly better than the simulated crawl.
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Figure 4.13: Average Pagerank per day of crawl using thelarger-sites-firststrategy.
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Figure 4.14: Average Pagerank versus page depth, showing that there is a correlation only in

the first few levels.
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actual and simulated Web crawls usinglarger-sites-firststrategy.
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4.5.2 Experiment 2

We also performed two actual crawls using WIRE [BYC02] in two consecutive weeks in the.GR domain,

usingBreadth-firstandLarger-sites-first. We ran the crawler in a single Intel PC of 3.06GHz with 1Gb of

RAM under Linux, in batches of up to 200,000 pages, using up tor = 1000 simultaneous network connec-

tions, withw = 5 seconds between accesses to the same Web site, andw = 15 for sites with less than 100

pages.

For this experiment, we focused in the time variable, as it is worthless to download pages in the right

order if they cannot be downloaded fast. We calculated the Pagerank ofall the pages in the collection when

the crawling was completed and then measured how much of the total Pagerankwas covered during each

batch. The results are shown in Figure 4.16.
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Figure 4.16: Cumulative Pagerank (PR) and cumulative fraction of documents (Docs.) of an

actual crawl of the.GRdomain using two strategies:Breadth-firstandLarger-sites-first.

Both crawling strategies are efficient in terms of downloading the valuable pages early, butlarger-sites-

first is faster in both downloading documents and downloading good pages. Thisstrategy “saves” several

small Web sites for the middle and end part of the crawl and interleaves thoseWeb sites with larger Web

sites to continue downloading important pages at a fast pace.
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4.6 Conclusions

Most of the strategies tested were able to download important pages first. Asshown in [BSV04], even a

random strategy can perform well on the Web, in terms that a random walk on the Web is biased towards

pages with high Pagerank [HHMN00]. However, there are differences in how quickly high-quality pages are

found depending on the ordering of pages.

Thehistorical-pagerankfamily of strategies were very good, and in case of no historical information

available,OPIC and larger-sites-firstare our recommendations.Breadth-firsthas a bad performance com-

pared with these strategies;batch-pagerankrequires to do a full Pagerank computation several times during

the crawl, which is computationally very expensive, and the performance isnot better than simpler strategies.

Notice that thelarger-sites-firststrategy has practicals advantage over theOPICstrategy. First, requires

less computation time, and also does not require knowledge of all in-links to a given page asOPICdoes. The

later is relevant when we think of distributed crawlers as no communication between computers is required

to exchange these data during the crawling process. Thuslarger-sites-firsthas better scalability making it

more suitable for large scale distributed crawlers.

Also, our simulation results show that attempting to retrieve as many pages from agiven site (c >>

1), allows the crawler to effectively amortize the waiting timew before visiting the same site again. This

certainly helps to achieve a better utilization of the available bandwidth, and is good for both the search

engine and the Web site administrator.

Experiments with a real crawl using thelarger-sites-firststrategy on the ever-changing Web validated

our conclusions whereas simulation was the only way to ensure that all strategies considered were compared

under the same conditions.

We verified that after a few days, the quality of the retrieved pages is lowerthan at the beginning of the

crawl. At some point, and with limited resources, it could be pointless to continuecrawling, but, when is the

right time to stop a crawl? The next chapter deals with this subject through models and actual data from Web

usage.
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