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Abstract Link analysis on Web graphs and social networks The JXP algorithm runs at every peer, and it works by
form the foundation for authority assessment, searchtreszdmbining locally computed authority scores with informa-
ranking, and other forms of Web and graph mining. Thi#on obtained from other peers by means of random meet-
PageRank (PR) method is the most widely known memhegs among the peers in the network. The computation on
of this family. All link analysis methods perform Eigenvecthe combined input of two peers is based on a Markov-chain
tor computations on a potentially huge matrix that is detate-lumping technique, and can be viewed as an iterative
rived from the underlying graph, and the large size of trepproximation of global authority scores. JXP scales with
data makes this computation very expensive. Various te¢che number of peers in the network. The computations at
niques have been proposed for speeding up these analgsash peer are carried out on small graph fragments only, and
by partitioning the graph into disjoint pieces and disttibuthe storage and memory demands per peer are in the order of
ing the partitions among multiple computers. However, dle size of the peer’s locally hosted data. It is proven that t
these methods require a priori knowledge of the entire grappkP scores converge to the true PR scores that one would
and careful planning of the partitioning. obtain by a centralized PR computation on the global graph.

This paper presents the JXP algorithm for computin The paper also discusses the issue of misbehaving peers

PR-style authority scores of Web pages that are arbitrarfjAt attempt to distort_the global autho_rity values by previ
distributed over many sites of a peer-to-peer (P2P) netwoll manipulated data in the peer meetings. An extended ver-

Peers are assumed to compile their own data collections, 3" ©f IXP, coined TrustJXP, provides a variety of counter-

example, by performing focused Web crawls according FB€asures, based on statistical techniques, for deteatsig s

their interest profiles. This way, the Web graph fragmengédous behavior and combining JXP rankings with reputatio

that reside at different peers may overlap and, a prioriige825€d scores.
social reputation, Markov chain aggregation
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1 Introduction
1.1 Motivation and Problem

Peer-to-peer technology is a compelling paradigm for large
scale file sharing, publish-subscribe, and collaborativekyw

as it provides great scalability and robustness to failares
very high dynamics (so-called churn) [60]. Another inter-
esting P2P application could be Web search: spreading the
functionality and data of a search engine across thousands o
millions of peers. Such an architecture is being pursued in a
number of research projects (e.g., [63,24,10,35,8,53)) an
could offer various advantages: i) lighter load and smaller
data volume per peer, and thus more computational resources
per query and data unit, enabling more powerful linguistic o
statistical learning methods; ii) with each peer beingelos
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the human user and the user trusting its local software aaditional complexity posed by the fact that the graph frag-
controlling the degree of sharing personal information amdents of different peers may arbitrarily overlap.
collaboration with other peers, there is a great opporgunit

for leveraging user behavior such as explicit or implicéde I .

back in the form of query logs, click streams, or bookmarkd;2 Contribution and Outline

iii)ad tralized h Id ide better i i
li) & decentralized approach could provide be erlmmun:%xp (Juxtaposed Approximate PageRank) is an algorithm

or coping with the above situation: dynamically computing
] o in a decentralized P2P manner, global authority scores when
Social communities is another concept that has latelye Web graph is spread across many autonomous peers with
been explored to improve the search experience (e.g cidelifyrbitrarily overlapping graph fragments and the peers are a
flickr.com, myweb.yahoo.com, etc.). With billions of peopriori unaware of other peers’ fragments. In the JXP algo-
ple from the different parts of the world contributing withyithm, each peer computes the authority scores of the pages
their input, the task of identifying the “hot spots” of a comthat it has in its local index, by locally running the stan-
munity becomes crucial. The community users interact §xrd PR algorithm. A peer gradually increases its knowledge
a way that results in community graphs that allow authoghout the rest of the network by meeting with other, ran-
ity analyses similar to popular PageRank-style analyses @nly chosen, peers and exchanging information, and then
Web graphs [19]. Such community graphs naturally arise jacomputing the PR scores of local interest. This procass, i
various applications, by different means of user intetati principle, runs forever, and experiments have indicatedl th
with respect to a wide variety of entities, and with varyinghe resulting JXP scores quickly converge to the true, dloba
notions of authority (e.g., product ratings, opinions dmeot pR scores.
people’ blogs or photos, bibliographic references, etc.). For further improving the network performance, we pro-

PageRank-style authority scoring, based on the Eigd¥se a heuristic strategy for guiding the choice of peera for
space analysis of a suitably defined graph of Web links, gReeting. The improvements can be observed in our experi-
dorsements, or interactions, is an established tool fdt-rafnental results with real-world data collections. We preved
ing information units (Web pages, Sites, peers, Socia“:@'pu mathematical framework for the anaIyS|s of IXP, where im-
etc.) by their relative importance [19,13,44]. As Googls h&ortant properties are derived and it is proven that the JXP
impressively demonstrated, such authority information c&cores converge to the true global PR scores. Applicatibns o

be exploited for improved ranking of search results. the algorithm are also given, where we have integrated the

R { ious techni have b df JXP scores into a P2P search engine in order to improve the
ecently, various techniques have been proposed for s Ag of the results.

ing up these analyses by distributing the link graph among Since hi ; : -
: . . L gh authority scores can bring benefits for peers,
multiple sites [36,64,2]. In fact, given that Web data igeri ; i expected that malicious peers would try to distort the

inally distributed across many owner sites, it seems am rectness of the algorithm, by providing different (Usua
more natural (but obviously also more challenging) Co.nf'ﬁgher) scores for some of their local pages. P2P networks
putational model to perform parts of the PR computati

. - Ute generally vulnerable to malicious agents that can ¢heat
right where the data originates from followed by smaller dl%rder to get more benefits. [48] points out that P2P architec-

tributed computation for combining the local results in afy e for information sharing, search, and ranking mustint
appropriate way. Exploiting a block structure in the I'nk'm?ate a completeeputation system&eputation systems op-

to search result distortion by the bias of big providers, €0
mercial interests, or even censorship.

trix is an example [36]. However, these advanced metho rate by collecting information on the behavior of the pgers

work only when the overall Web graph is nicely partitione coring each peer based on good vs. bad behavior, and allow-
into disjoint fragments, which is the case when partitiares &; '

formed by the sites that own the pages. Fl)ﬂge';ge system to take countermeasures against suspicious
In this paper we address the problem of computing PR In this work we also present a trust model that integrates
in a general P2P setting with potentially overlapping graptecentralized authority scoring with an equally decentral
fragments distributed across peers of a large network. \'¢ed reputation system. Our approach is based on anomaly
consider the architecture of a P2P search engine where edetection techniques that allow us to detect a suspicioeis pe
peer is autonomous, crawls Web fragments and indexes thessed on the deviation of its behavior from some common
locally according to the user’s interest profile, and callabfeatures that constitute the usual peer profile. Our method
rates with other peers for query routing and execution. @aerombines an analysis of the authority score distributiath an
would often be executed locally on the user’s personalizaccomparison of score rankings for a small set of pages. The
“power search engine”, and occasionally forwarded to oth&XP algorithm is then enhanced to avoid the impact of mali-
peers for better results. In such a setting, PR-style seseescious peers. We call this enhanced versiomstIJXP
still crucial for the ranking of search results, but the loca Preliminary results of this research have been presented
Web fragment of a peer may be too small or incomplete for[52,51]. The current paper extends these prior conferenc
a meaningful link analysis. Distributed PR computations @ublications in the following ways: 1) We provide additibna
the kind mentioned above seem natural, but they work ordetail in the mathematical analysis of the JXP algorithm, in
for disjointly partitioned graphs; in our setting we face thcluding a discussion of its robustness to misestimatedinpu
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parameters, most notably, the estimate of the total numi2et.2 Distributed PageRank

of Web pages. 2) We provide methods for making JXP ro-

bust to dishonest peers that aim to manipulate the datesthapjith the advent of P2P networks [1,62,54,55] attention to

exchanged among peers at peer meetings, and we showgiBgibuted link analysis techniques has been growing.

effectiveness of the techniques for detecting and compensa |, [s4], Wang and DeWitt presented a distributed search

ing various forms of misbehavior in experiments. _engine framework, in which the authority score of each page
The rest of the document is organized as follows. SeCt'i@computed by performing the PR algorithm at the Web

2 discusses related work. A more detailed explanation of tger that is the responsible host for the page, based only

JXP algorithm is given in Section 3. The extensions and rugy, the intra-server links. They also assign authority stwe

time improvement of JXP are discussed at Section 4, and &y server in the network, based on the inter-server links,

mathematical analysis i§ given at Section 5. The trust modglq then approximate global PR values by combining lo-
and the TrustJXP algorithm are presented at Section 6. ke page authority scores and server authority values. Wu
perimental results are described in Section 7, and Sectiog &y aAperer [66] pursue a similar approach based on a lay-
concludes the paper with ideas for future work. ered Markov model. Both of these approaches are in turn
closely related to the work by Haveliwala et al. [36] that
postulates a block structure of the link matrix and exploits
this structure for faster convergence of the global PR com-
putation. A fundamental approach to distributed speceal d
composition of graphs is given by Kempe and McSherry
. . . . ... [40], where distributed link analysis would be a speciakcas
Llnk—_based authority ranking has recelve(_:i great attennoan t]he presented mathematicalyand algorithmic ?ramework.
the literature. It has started with the seminal works of B”ﬂelated methods that can compute authority and centrality

and Page [14] and Kleinberg [41], and after these, ma ; ; -
other models and techniques have followed. Good SurV?easures on a variety of directed and undirected graph struc

2 Related Work

2.1 Link Analysis

£ th > ¢ d variati ; T Tes are given by Canright et al. [18]. All these methods re-
25 12 Tﬁny improvements and variations are given in | uire and build on particular distribution of pages amorg th

sites where the graph fragments have tadisgoint, which
makes them suitable for certain classes of distributed sys-
tems and also for accelerating link analysis on a cluster of
computers, but less attractive for a P2P environment. In a
P2P network, disjoint partitioning would be a strong con-

: . straint, given that in most P2P networks peers are completel
some importance to page How muchp contributes to the autonomous and crawl and index Web data at their discre-

import_ance oiq_is propo_r'gional to the impor_tance piitsel. tion, resulting in arbitrarily overlapping graph fragment
This recursive definition of importance is captured by the>™: :

stationary distribution of a Markov chain that describes a_Chen et al. [20] proposed a way of approximating the
random walk over the graph, where we start at an arbitrdfi? v@lue of a page locally, by expanding a small subgraph
page and in each step choose a random outgoing edge f@Jeund the page of interest, placing an estimated PR at the
the current page. To ensure the ergodicity of this Mark@Pundary nodes of the subgraph, and running the standard
chain (i.e., the existence of stationary page-visit pribab algorithm. This approach assumes that the full link streectu

ties), additional random jumps to uniformly chosen targét ccessible at a dedicated graph server. In a P2P scenario,
pages are allowed with small probability — €). Formally, however, this algorithm would require the peers to query
the PR of a pagq is defined as: other peers about pages that have links to their local nodes,

and pages that point to pages that point to local pages, and so
on. This would be a significant burden for a highly dynamic
PR(a)=¢ex 3 PR(p)/out(p)+(1-¢)x1/N P2P network. The JXP algorithm, on the other hand, requires
plp—a much less interaction among peers, and with the new peer

whereN is the total number of pages in the link graphSelection strategy, the number of interactions is evenlemal
PR(p) is the PR score of the page out(p) is the outdegree Other techniques [43,21] for approximating PR-style au-
of p, the sum ranges over all link predecessorgoaind thority scores with partial knowledge of the global graph
(1— ¢) is the random jump probability, with @ € <1 and use state-aggregation technique from the stationary analy
usually set to a value like 0.85. sis of large Markov chains. These techniques have been de-

PR values are usually computed by initializing a PR vegeloped for the purpose of incremental updates to authority
tor with uniform values 1IN, and then applying a power it- scores when only small parts of the graph have changed. Dy-
eration method, with the previous iteration’s values subshamic computation in a P2P network is not an issue in this
tuted in the right-hand side of the above equation for evalprior work. Another work related to this topic is the one by
ating the left-hand side. This iteration step is repeatad urBroder et al. [17], where they have presented a graph ag-
sufficient convergence, i.e., until the PR scores of the-highregation method in which pages are partitioned into hosts
authority pages of interest exhibit only minor changes.  and the stationary distribution is computed in a two-step ap

2.1.1 PageRank

The basic idea of PR is that if pagehas a link to page
then the author op is implicitly endorsinggq, i.e., giving
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proach, combining the stationary distribution inside tbeth local trust matrix C where;; is the local trust value that a
and the stationary distribution inter-hosts. peerj assign to a peer. Extensions towards distributed and
A storage-efficient approach to computing authority scares-manipulable EigenTrust computations are presented in
is the OPIC algorithm developed by Abiteboul et al. [3]4]. The anomaly detection procedure described in [59] ana-
This method avoids having the entire link graph in one sitlyzes peer activity on the network in order to identify peers
which, albeit sparse, is very large and usually exceeds thbose behavior deviates from the typical peer-traffic pro-
available main memory size. It does so by randomly (or otfile (e.g., duration of connections, uploaded bytes, ett). |
erwise fairly) visiting Web pages in a long-running craw50] the authors present SeAl, an infrastructure desigoed f
process and performing a small step of the PR power déeddressing the problem of selfish peer behavior. It works
eration (the numeric technique for computing the principly combining a monitoring/accounting subsystem, an audit-
Eigenvector) for the page and its successors upon each siagiverification subsystem, and incentive mechanisms. An-
visit. The bookkeeping for tracking the gradually approxiether framework for reputation-based trust management is
mated authority of all pages is carried out at a central sigesented in [67], where peers give feedback about other
the Web-warehouse server. This is not a P2P algorithm peers’ good or bad behavior and various forms of network-
ther. wide trust measures can be derived in a P2P-style distdbute
In [56], Sankaralingam et al. presented a P2P algorithtamputation.
in which the PR computation is performed at the network
level, with peers constantly updating the scores of their la
cal pages and sending these updated values through the 8é&the JXP algorithm
work. Shi et al. [57] also compute PR at the network level,
but they reduce the communication among peers by distriblihe goal of the JXP algorithm is to approximate global au-
ing the pages among the peers according to some load-sh#nmity scores by performing local computations only, with
function. In contrast to these P2P-style approaches, tRe J¥w storage costs, and a moderate number of interactions
algorithm performs the actual computations locally at eagmong peers. It runs on every peer in the network, where
peer, and thus needs a much smaller number of messagesach peer stores only its own local fragment of the global
graph. The algorithm does not assume any particular assign-
ment of pages to peers, and overlaps among the graph frag-
2 2 Trust Models ments of the peers are allowed.
The idea of the algorithm is simple, yet it is quite pow-

A general framework for different types of trust and distru€ Ul Starting with the local grapB of a peer, the peer first
propagation in a graph of Web pages, sites, or other entitR4€ndsG by adding a special nod#/, calledworld node
is introduced in [30]. TrustRank [33] is a PageRank-like agince Its role is to represent all pages in the network that do
thority measure based on manually labeling a seed of highigt Pelong taG. An initial JXP score for local pages and the
trusted hosts, and then propagating that trust to othesho¥for'd node is obtained by running the PR algorithm in the
This algorithm allows estimating the amount of trusted scof Xt€nded local grapl’ = G-+ W. The results are stored in
that each Web page receives and indirectly evaluating a §core listL. This initialization procedure is described in
the amount of score received by spammers. In [65, 31], orithm 1.
original TrustRank idea has been further extended.

Detecting and combating Web link spam is a special, bhllgorithm 1 JXP Initialization Procedure
highly important case of reasoning about trust and distrusi*_ npUt. Tocal graphG and est. size of global graph
[32] gives a taxonomy of the mostimportant spamming techy. . size@) '
nigues. A number of algorithms have been presented in order Create world node/
to fight spam. Most of them (see, e.qg., [7,26,6,65,31]) arf: scorgp|p € G) — 1/N
alyze the statistical properties of the link structure icetll > Zc,orf{\’é) T/V(N —n)/N
by the Web and classify as spam those pages that exhiSitPRi(PageRgnRG,)
statistically significant local deviations in these prdijees. 8 L PR

The problem of untrustworthy or manipulated content is
felt even more in a P2P environment [60]. The complete lack
of accountability of the resources that peers share on the ne JXP assumes that the total number of nodes in the global
work offers an almost ideal environment for malicious peeggaph is known or can be estimated with decent accuracy.
and forces the introduction of reputation systems thatteelpThis is not a critical assumption; there are efficient tech-
assess the quality and trustworthiness of peers. In [48], thiques for distributed counting with duplicate eliminatjo
authors present a complete overview of the issues related we show later in this paper that a wrong estimate of the
to the design of a decentralized reputation system. Eigeamumber global graph size only causes a rescaling on the JXP
Trust [37] is one of the first methods introduced to assignsaores, while the ranking order of the pages is preserved.
global trust value to each peers, computed as the stationaryThe world node has special features, regarding its own
distribution of the Markov chain defined by the normalizedcore and how it is connected to the local graph. As it rep-
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resents all the pages not indexed by the peer, we take all theThe next step is to update local score ligt and local
links from local pages to external pages and make them poivitrld nodeWa. L), is derived fromlLy, by keeping the scores
to the world node. In the same way, as the peer learns abotiall pages that either belong Y, or point to one of the
external links that point to one of the local pages, we assigages irWa. W, is obtained by taking all the links froiiy
these links to the world node. (This is when the peer meeigt point to a page iy and adding the links fronkg that
with another peer). For a better approximation of the totalso point to a page i¥a. This is done analogously at peer
authority score mass that is received from external pages, B
weigh every link from the world node based on how much The merged graplsy, merged nodé\y, and merged
of the authority score is received from the original pagé thecore listLy, are then discarded, as well @, Ws andLg,
owns the link. Another special feature of the world node &b that the storage requirements are kept low. Algorithm 2
that it contains a self-loop link, that represents linksniro shows the pseudo code of the JXP algorithm. Figure 1 illus-
external pages pointing to other external pages. The s€orérates the procedures to combine and disconnect local graph
the world node is equivalent to the sum of the scores of thad world nodes.
external pages. During the local PR computation the proba-
bility of a random jump to the world node is also set propot= : :
tional to the number of external pages. Algorithm 2 The JXP Algorithm

Since local information is not sufficient to estimate globa}: irgplégtmca' graphGa, world nodeWa, score list
SCOres, peers improve their kn.OWIedge. by mee.tmg othespe%zr antact a random peBrin the network and exchange information
in the network and exchanging the information they curz. G, . mergeGraphgGa, Gg)
rently have, namely the extended local graph and the scasew, — mergeWorldNode®Va, Ws)
list. The information is then combined by both of the two6: Gy < (Gm +Wu)
meeting peers, asynchronously and independently of eaghly < combineListea, L)

) - . PR— PageRankGy, )

other. Thls works as follows. A new graph is formed from_g: L, — updateScoresLigty, PR
the union of both local graphs. World nodes are also unie: updatéL,)
fied to create a new world node that is connected to the néd updatgWa)
graph. The union of two world nodes consists of taking tH&: Discard(Gu,W,Lv, Gs, W, Ls)
union of the links that are represented in them and removing
those links that already appear at the graph to which the new
world node will be attached to, so multiple representations
of the same link are avoided.

More formally, letGa(Va, Ea) be the local graph at peer,
A, whereVa andEp are the sets of pages and links, respec-

tively. Let Wa(Ta) be the world node attached to peefs The JXP algorithm, as presented before, already has nice

local graph, wherd, is the set of Im_ks reprgsented at th%calability, since the computations are strictly local &md
world node. When peeh exchange information with peerdependent of the number of peers in the network, and stor-
B, they both create locally a merged graGi(Vi,Ew), age requirements per peer are linear in the number of locally
whereViy = VaUVs andEy = EaUEg, and a new merged a0 pages. Moreover, we show, both mathematically and
world nodeW (TM) thatis connected Gy, whereTy = experimentally, that the authority scores given by the -algo
(TAUTs) — Ew, i.e., the set of links outgoing from pages;tnm converge to the true global PR scores, as the meetings
that are not iy W't.h target nodes 'F‘S'd‘ﬁw- . between peers are performed in the network. Nonetheless,
A new merged list of scoredyy, is created by merging y,q nerformance of JXP can be further enhanced, as this Sec-
the two original lists, taking the average of the scoresier ty; il show. The extensions concern the meeting step, be-
pages that belong to both of them. fore the PR computation, where the authority scores from

. hAfter t;]is merg(;n% step, the peer p_erforhms the P'}? al9B5th peers are combined and their local graphs are merged,
rithm on the extende gragiy +Wy, using t € SCOresirom g the peer selection strategy for choosing a peer for the
Lm as initial scores. The score of the world node is initially meeting.

setto

Extensions and Optimizations

Ly (W) =1— L (i) 1) 4.1 Light-weight Merging of Local Graphs
1
o At a peer meeting, instead of merging the graphs and world
and the PR scores obtaind®lR are used to update thenodes, we could simply add relevant information received
current JXP score lidty in the following manner: from the other peer into the local world node, and perform
the PR computation on the extended local graph and still
the JXP scores converge to the global PR scores. The meet-

(i) = { ':hi(ig)XpR(M if i 6Vl\_/l @) ing step is then simplified_and much more light-weight, as
W) otherwise shown by an example in Figure 2.
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W node:
G-C
J—E

Merged Graph
&

Merged World
Node

W node:

L K—E

L-G

Fig. 2 lllustration of the light-weight merging step.

W node:
J—-E
K—E
L-G

vergence speed of the algorithm, since a reduced transition
matrix implies a larger number of states that are aggregated
on the world node, which could lead to a higher approxima-
tion error. This is in fact a valid point, but our experiments
never showed any real slow-down of the convergence or big-
ger errors in comparing JXP scores against true PR scores
for the high-ranked pages. Another potential caveat about
the light-weight merging could be that the number of itera-
tions for a local PR computation might increase, but again,
this never became a real issue in all our experiments.

4.2 Combining Authority Scores

With the new light-weight meeting step proposed, PR is per-
formed at the extended local graph, where the only changes
are due to insertion of links from the world node to local
pages, whereas links from local pages to the world node are
invariant during all iterations of the JXP algorithm. Caihsi
ering the authority mass transfer, it is intuitive that,nfro
iteration to iteration, more and more authority mass ismive
to local pages as the peer learns about more incoming links;
so the score of the world node should always reduce until
the point it is equal to the sum of the true PR scores of the
external pages (we will address this property on Section 5,
where we proof that this is indeed the case). This is another
argument for the convergence of the JXP algorithm.

Based on this consideration, we propose a new way of
combining score lists of two peers. Instead of taking the av-
erage of the scores of those pages that belong to both lists,
we always take the bigger one of the two scores. This is jus-
tified by the fact that the world node’s score is monotonicall
non-increasing in the sequence of peer meetings. So we can
use a tighter upper bound for the world node’s final score to
speed up convergence, since a bigger score is an indicator
that the peer knows about more incoming links. In addition,
when updating the score lidts, the scores of pages that do
not belong to the local grapBa should not be re-weighted,
as this would result in smaller values, given that the ratio
PRW)/La(W) is expected to be always less than one. Thus,
the updating procedure is replaced by

, . [PRi)ifieV,
Lali) = { LA((i)) otherV\ﬁse (3)

4.3 Peer Selection Strategy

Peers differ in the sets of pages they have indexed, and con-
sequently different peers contribute to a given peer'salob
view and convergence of scores to different extents. The ba-

This has a big impact on the performance, as the gragie peer selection strategy, where peers are chosen at ran-
merging requires considerable computational time; mordem, is clearly not the best approach for meeting other peers
over, without the full merging steps, PR is computed fd?erformance could be enhanced if each peer could iden-
smaller local transition matrices (roughly half the sizétwf tify the most promising peers to meet, namely, the ones that
matrices in the full merging). One could argue that the lightvould lead to faster convergence of the scores of its locally
weight merging has the drawback of slowing down the comdexed pages.
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A good indicator of the “quality” of a peer, i.e., howin PeerB. If the value is above some pre-defined threshold,
much it would contribute to improve another peer's scoreBeerA caches Peds'’s ID. This way, each peer remembers
is the amount of outgoing links that are also incoming linkgeers that were previously met and have a relatively high
for pages in this other peer; the higher the number of linkeimber of inlinks to their local pages. Note that this dods no
added to the world node, the higher is the amount of axeally affect storage requirements, since the thresholiddi
thority mass transferred to local pages. The problem nowtiee number of peers and only the ID of peers are stored.

how to identify these “good” peers, without prohibitively Still during the meeting step, we also measure the over-

creasing network bandwidth consumption. Our solution islgp between the local page setsfo&ndB with the purpose
combination of caching and statistical synopses of thebee finding promising peers for a meeting. The idea here is
local information. that, given three peers, PerB andC, if PeerC has many
links to PeelA, and the overlap betwednandB is relatively
Peer Synopses high, it is very likely thaiC will have many links pointing to
B as well.
Statistical synopses of peers are a light-weight approxima

tion technique for comparing data of different peers Withpieers, they both exchange their list of cached peers’ IDs.

out explicitly ttransferrlntgt.thelrfcontetnts. S%/r!o.pses FrITi;VI The IDs are temporarily stored as potential candidates for a
Very compact representations for Sets, containing so Offext meeting. For getting the correct correlation with ¢hes

information that can be used to estimate the_z correlatlo_n indidates, pre-meetings are performed with each peez n th
tween two sets. In comparing sets, we are interested in E

?nporary list, where instead of exchanging their content,

meaSléres ct)I] overlellp ellanc: contatl;]nmentt : G'an .tw(ch ?ft%ﬁ\ers return only their MIPs vector representation of their
Sy and S, the overlap between these two sets is defin CCesSors setsyccessors).

as|SaNSgl, i.e., the cardinality of the intersection. The no- _ _
tion of containment was proposed in [15] and is defined as The pre-meetings phase does not increase the network
ContainmentSy, S8) = |SaN Ss|/|Ss|- So containment rep- l0ad, since only MIPs vectors are sent, and since these vec-
resents the fraction of elements3p that are also irGa. tors are small we can piggyback them on communication
Fundamentals for statistical synopses of sets have a rflBgssages that are exchanged in the P2P network anyway.
literature, including work on Bloom filters [12,28], hastesthes The valueContainmentsuccessor€),local(A)) is used
[29], and min-wise independent permutations [16]. In thi® sort peers in the temporary list. Then we select the peer
paper we focus on min-wise independent permutations (M{fAg) the highest score on the temporary list for the next,
The MIPs technique assumes that the set elements ggal, meeting (i.e., no longer a pre-meeting), and this step
be ordered (which is trivial for integer keys, e.g., hashskeghooses a good candidate with high probability based on
of URLs) and computell random permutations of the ele-our heuristics. After a peer is chosen and the meeting took
ments. Each permutation uses a linear hash function of tsiace, the peer is dropped from this temporary list. It is im-
form hj(x) := & *x+b; mod UwhereU is a big prime num- portant that peers have an updated view of the network, as
ber andg;, bj are fixed random numbers. For each of Mie peers can change their contents or eventually leave the net-
permutations, the MIPs technique determines the minimugdrk. Therefore, peers have to visit again the already ahche
hash value, and stores it in &dimensional vector, thus peers, with a smaller probability. In addition, the proliapi
capturing the minimum set element under each of these r@fpicking a peer at random should never go down to zero,
dom permutations. By using sufficiently many different pes some peers may not be reachable by merely following the
mutations, we can approximate the set cardinality and céifain of cached peers.
estimate the containment of two sets.

Whenever there is a relatively high overlap between two

Pseudo code for the optimized version of the JXP algo-
) rithm is shown in Algorithm 3. The initialization procedure
Pre-meetings Strategy is the same as the one described previously in Algorithm 1.

For the new meeting strategy, we propose that peers perform
“pre-meetings”, for finding the most promising peers for the____ __ i
next meeting. To this end, we first require all peers to corfilgorithm 3 Optimized JXP Algorithm
pute two min-wise permutations vectors: one representirlg input: local graphGa, world nodew,, score listLa
its set of local pages, and the other representing the set c% gaieitelectpee(r)
taining all the successors from all local pages. We calldhes;: \y, .~ addLinksGg, W)
two MIPs vectordocal(A) andsuccessof@), for a given  5: G, — (Ga+Wa)
PeerA. 6: La < combineListf_a,Lg)

Assuming that PeeA has chosen Peds for the next [ PRd‘— PageRantG,)
meeting,_the pre—mee_ztings strategy works in the foIIowingg B?SCESSI(GAL,W&LB)
way. During the meeting step, Peecomputes
Containmentsuccessor®),local(A)), i.e., that the fraction
of local pages in Peeh that has inlinks from local pages
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5 Analysis of JXP foreveryi, j, 1<i,j<n.
The transition probabilities from the world nod®,; and
In this Section we provide important properties of the JXPww, change during the computation, so they are defining
scores, as well as a proof for the correctness of the J&Pcording to the current meeting
method. We show that JXP scores converge to the correct
values, the global PR scores of the individual pages, ovequi

alently, the stationary visiting probabilities of the urigiang a(r)t 1
global Markov chain. We consider only the optimized JXPyi = 5 outlln) b (8)
version with the light-weight merging from Section 4.1. Fowt Ow

Our analysis builds on the theory of state aggregation in
Markov chains [23,61,49,38]. However, applying this the-
ory to our setting is not straightforward at all, and we use
it only for particular aspects. State-aggregation tealesq
assume complete knowledge of the Markov chain and &g, = 1— Z o (9)
typically used to speed up the convergence of computations i=1
(see, e.g., [43,21]). In contrast, our P2P setting poses the

difficulty that each peer has only limited knowledge of the ' For the JXP computation, random jumps are also added,
Web graph and the resulting Markov Model. Moreover, thigith the particularity that the random jumps to the world
restricted view differs from peer to peer. node are made proportional to the number of pages it repre-

For the proof we assume that there are no changes in ats. This gives us the following transition matrix
network, so there exists a global web graph witpages, a

global transition matriXCy«n and a global stationary distri-
bution vectorr. The element;; of C is equal to Yout(i) if 1
there is a link from pageto pagej, and 0 otherwise. After P' =& P+ (1—&)=1n.)%1 (1 ... |(N—n)) (10)
adding the random jumps probabilities we have a transition N
matrix C’
which has a stationary distribution vector

CIISCJr(l*S)%leN (4)
T
Every peer has a local gragh subgraph of the global o= (al a”|a‘”) (1)
web graph, that corresponds to the set of pages it has crawled
Pages that are not {& are considered to be on the &tThe that corresponds to the JXP scores, informally introduced
local graph is extended by adding the world node. In our nigr Section 3 as score lists.
tation a link from page to pagej is represented by— |,
andW is the set of external pages that are represented in
the world nodew. For every page in W we store the in-
formation about its outdegreeuyt(r) and current JXP score5.1 Initialization Procedure
a(r), both learned from a previous meeting. The number of

local pages is given by. Associated with each extended lowe start with a local transition matri®°, with all py; ele-
cal graph we have a local transition matRxthat has the ments equal to zero since the peers start with no knowledge

following format about external pages. The elem@giy is consequently set
to 1.
P11 ... Pin|Piw
p N R I 5 o
(n+1)% (n+1) N . () PS. =(0...0J1) (12)

The local JXP scores vector is initially set to:

where
b = out( if 31— ] 6) o= (1 1|M)T (13)
! 0  otherwise N NITN
1 The PR computation is then performed using the transi-

Piw = Z out(i) (7) tion matrixP’° and an updated value for the local authority
}gé scores vectoa® (t = 0) is obtained.
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5.2 The Meeting Step Proof The proof is based on the study of the sensitivity of
Markov Chains made by Cho and Meyer [22]. From there

As described earlier, the meeting process consists of gddime can state that by increasipg; by o and decreasinguw

new links, or updating existing links from the world node tdy the same amount, the following holds

the local pages, and performing the PR algorithm using the

updated transition matrix.

t—1 t
Consider the follow local transition matrix and its loca@w ~ — 9w _ a\tN 3 My (1)
JXP scores vector at meetifig— 1) (t > 1) alt

wheremy, is the mean first passage time from page
P11 ... Pin | Pw the world node (i.e., the expected number of steps for reach-
. . ing w when starting ini, in the underlying Markov chain).

Pt(ﬁil)x(ml) = R (14) Rearranging the terms on the equation we have
pnl1 -+ Pnn | Prw
t— t—1[ 41
Paa -+ Pwn | Paw
Ay — Oy "= =0y 0y & My (22)
at-1— (ai—l art171|a\tN71 )T (15) Since all the values on the right side of the equation are

non-negative we can assure that
For the sake of simplicity, we split the merging step, by
considering only one link addition/update at a time. Assum- 1
ing that during meeting a link to page has been added or@ — dw =~ <0 (23)

updated, we can exprepg; at timet as Theorem 2 The sum of scores over all pages in a local graph,

at every peer in the network, is monotonically non-decregsi

t A1
Pui = Pwi- +0 (16) Proof The proof follows from Theorem 1 and the fact that

Since the authority scores of external pages on the mgb following equality holds
ing step can only increase or remain unchanged we can as-
sure that the value a¥ is always non-negative. a4y —1 (24)

As the transition probability from the world node to itself; Prewe
is always adjusted to compensate for changes of the other
transition probabilities we can also write We now proceed by showing how the JXP scores and the
global PR scores are related. The next Theorem shows that
the global PR values are an upper bound for the JXP scores.

% = ptn?v& -0 ) ) o
- ] ] ) Theorem 3 Consider the true stationary probabilities (PR
The transition matrix at meet”tg:an then be written as Scores) of pagese' G and the world node W and i, and
their JXP scores after t meetings and ay,. The following
holds throughout all IXP meetings:

PP=P1+E 18 :
+ (18) O<al<mforieGandm <aj <1
where Proof We know that for every pages G:
0 0l 0 , ,
1-¢ T T
. g T=—+4€y —— 4+ —— (25)
E—|: o (19) N jZi out(j) jZi out(j)
0 0/ 0 1€G jcG
0..0060...0-0
and
which leads to an updated JXP scores vector
1-¢ al al  at
al=—"+¢ L_ ey LW 26
at=(ai ... cr}1|a\t,v)T (20) N jZi out(j) JZi out(j) af; 1 (26)
1€G jewt

The following two theorems describes important proper-
ties about the JXP scores. We prove the claim about the' values by induction on
t; the proof for the claim on the world node follows directly

Theorem 1 The JXP score of the world node, at every pegfom the fact that the score vector is normalized. The claims
in the network, is monotonically non-increasing. thata; > 0 anday, < 1 are trivial to show.
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Fort = 0 we consider the situation that a given peer witbases the nodes are treated as local nodes, and we take their
graphG knows only its local graph and has no informatiom; values from the peer’s local bookkeeping. However, be-
about the world node other than the total number of nodesuse all peers, by Theorem 3, invariantly underestimate th
N (as explained in Section 5.1). Thus the peer assumes tiaé stationary probability of these nodes, we can safady us
the only transfer of score mass fromto any node inG the maximum of thex; values from the two peers in a meet-
is by random jumps, which is the minimum transfer that ieg: the maximum is still guaranteed to be upper-bounded
possible. Sincés includes outgoing links tev, a local PR by the true PR scorg;.
computation based on this setting cannot overestimate andTheorem 3 is a safety property in that it shows that we

will typically underestimate the scores of node<Gn never overestimate the correct global PR scores. What re-
Now assume that the claim holds for all meetings up toains to be done is to show liveness in the sense that JXP
and including, and consider the+ 15 meeting. makes effective progress towards the true PR scores. The ar-

First we observe that becauseadf < al; ! (by Theo- gument for this part is based on the notion of fairness from
rem 1),W!' C G, and the induction assumptiarj < 1, the concurrent programming theory (see, e.g., [42]): a sequenc
following upper bound holds for the third summand (abbr&f events is fair with respect to eveetf every infinite se-
viated asB): guence has an infinite number @bccurrences. In our set-

ting, this requires that in an infinite number of P2P meetings
every pair of peers meet infinitely often. Truly randomized

aW < _B 27 meetings with uniform distribution have this property, but
€ Z out € Z out =B (27) there are other ways as well. A similar argument has been
ewt Jje_é used in [3] for online page importance.
] ] " Theorem 4 In a fair series of IJXP meetings, the JXP scores
Now consider the following upper bound faf**: of all nodes converge to the true global PR scores.

Proof The fairness property ensures that at some point, say

1—¢ 0{t+1 after thet™ meeting, every peer knows all its incoming neigh-
t+1 P ; .
oS g tEy m +6 (28) bors, the complete sef§|j — i, j € G} for alli € G. At this
Jlgé point, the only reason why a peer’s local JXP scafeor

some page may still underestimate the global PR scare

In thet + 15t meeting nodé could increase itg; value in  is that the JXP scores of the i mcommg ne|ghbors from out-
three ways: a) by learning about an additional nodaVt 1 side ofG may also be underestimated, umI < 1, for some
with x ¢ Wt that points toi, b) by learning that a previ- j € W. We show that this situation cannot hold indefinitely,
ously known nodes € W' that points td has a higher value once all the incoming links from external pages are com-
a“l(x) than the last time that a peer witlin its local graph pletely known.
was met (i.e., at some previous iterattor: t + 1), or ¢) the There are two cases to consider. The first case is when
value a}*l of some incoming neighboj from the peer’s the world node’s JXP scom,, has converged at some point
own local graphG (j € G) has a higher value than in previ >t so thatcxt 1y holds (strictly speaking, the difference
ous iterations. No other cases are possible. between thex and therr value is below some that can be

The last case is impossible unless one of the casegv@gde arbitrarily small; we simplify the argument for simple
or b) occurs, simply because all outdegrees are fixed andtation). At this point, we can infer th&t g af = ¥ 7.

without any external changes, the local PR computation g if somea is still strictly below its PR scoret, some
G will reproduce the scores computed in earlier iterationgi,er pagd € G must have am! value strictly higher than
]

But by the induction assumption we haw < 75 for all its PR scorer;. But this is impossible because of Theorem
previoug. In the first and second case we can conservatively

assume the upper bouitifor whatever increased score the ™
nodes inW'1 may transfer td or any other nodes if®.
Thus we have

The second case is tha§, < 15, holds and stays invariant

in all subsequent meetings. But then we hmﬁﬁl = a\fv
which implies:

t+1 -

1—¢ C( t+1 t+1
altl < N ¢ Z + B aftl — 1-¢ £y 9] € %
& out( ) i N &iout(j) & out(j)
. jeG (29) J€EG j€G (30)
—€ f.
_ _ 1
=N +£JZ.out()Hg' e N
jeG N i1 OUt(J)

Theorem 3 does not explicitly reflect the fact that nodes This is the very same fixpoint equation that we have for
from two local graphs can overlap. We assumed that in theke true PR scores, tiTe values. We know that this fixpoint
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equation has a unique solution [14,38,61]; thus the abdvel Misestimation of the Global Number of Pages

eqguation must have the same solution as the equation for the

15 values, and so the JXP scores eventually equal the PRe JXP algorithm assumes knowledge of the total number
score. (Again, strictly speaking, the difference dropowel of distinct pages in the P2P network in order to compute the
somee that can be chosen arbitrarily small.) random jumps probabilities and correctly converge to the
global PageRank values. Although there are efficient tech-
niques for distributed counting with duplicate eliminatio
[34,39,9], the need for knowing this global quantity could

. . . . be a problem.
Our convergence proof applies to the optimized, light-vaeig Ozr studies have found that the true value of the number

merging_ of peer graphs with thg local graph extended an|¥ pages in the network is only needed when we are inter-
by the single world node, and with truly random peer meet- ) . e
F_ted in the correct stationary distribution values forheac

ings. Also, we assumed that when two peers meet with 0Vga e. For cases where the correct values is not a must, as
lapping graphs, each peer uses its locally stored approgim: ge. > S '
PR as the estimate for thm values. If instead we use the ONgd as theranking is cprrect, Wh'Ch. IS c_)ften t.h‘? case, any
maximum of the two values for pages known at both pee‘fgo'ce for the random jump probability is sufﬁmgnt, as long
(as advocated in Section 4.2), the convergence proof s il the value for the global number of pages is the same
holds by the argument given in Theorem 3. across all peers an_d greater than the largest local catecti

To formalize this result about different values for com-

As for light-weight merging vs. forming the full union of . ; o .
the graph fragments of two meeting peers, the proof does Ryt'na the _random JUmps probabilities we redefine the tran-
' on matrix from Equation 10 as follows

carry over to the full-union method. But we do not see arﬁ} :
compelling reason for not using the light-weight approach.
We will show in Section 7.2 on experiments that the accu- 1
racy and convergence speed of the light-weight merging 3¢X) — ¢ P+ (1— &) lns1x1 (1...1)(X=n)) (31)
more or less as good as for the full-union method. Thus, we X
have a convergence proof for the interesting and really rele ]
vant method, the light-weight merging. whereX is the _value used to replace the global number of
Peer meeting strategies other than truly random (wi@gesN. WhenN is known, we haveX = N and the resullts
uniform choices) could also potentially invalidate the age the same as given on the previous subsections.
sumptions of the correctness proof. However, all we need The convergence of the JXP algorithm for different choices
to ensure for the proof to hold is that the meeting strate§y X is guaranteed by the following theorem.
is fair (in the sense described in Theorem 4). This is easy
to achieve even with the biased peer selection strategées grheorem 5 The JXP local transition matrices, at every peer,
sented in Section 4.3, simply by making evély peer se- are always stochastic, for any choice of:Xn.
lection step truly random. Fairness holds for any congtant
so we can choose a high value foand primarily pursue the Proof By inspection of the matri®’(X) we can see that it
biased meeting strategy. satisfies all three conditions for being stochastic [61]
Finally, we disregarded the dynamics of the P2P net-
work in the sense that we assumed the global graph to be p{j >0 foralli, j

time-invariant. This is unrealistic for various reasonsidw o . p. = 1 for alli

. . j
Web pages are created, old pages disappear, and links gréat |east one element in each column differs from zero.
created or deleted all the time, 2) therefore, peers want to

periodically re-crawl parts of the Web according to their in - The first and third conditions require thét> n.
terest profiles and refreshing policies, and 3) peers joth an

leave the P2P network at high rate (the so-called “chum” tpeqrem 5 guarantees that there exists a stationary dis-
phenomenon that is typical for P2P networks). Under theﬁ‘%)ution vectora (X)

conditions, there is no proof of JXP score convergence, an

with the current state of the art in P2P computing, there are
hardly any guarantees that can be proven under extremel)s(
high churn. But this applies also to other, conceptually—sirﬁ'(
pler, properties of P2P systems in general, such as DHT per-
formance guarantees or full correctness under partigularl associated with each local matrix, which corresponds to
“nasty” failure scenarios [47]. On the positive side, JXB hahe JXP scores.

been designed to handle high dynamics, and the algorithmsAlthough this result does not mathematically relate the
themselves can easily cope with changes in the Web graph(X) values with therz values, our experiments (see Sec-
repeated crawls, or peer churn. Extending the mathematitbah 7) indicate thaty; (X) values, withX # N are related to
analysis to include these additional difficulties is a odwadle o (N) by a scaling factor, which results in the ranking orders
for future work. to remain unchanged.

5.3 Additional Considerations

)= (@1(X) ... an(X)|aw(X))" (32)
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6 Identifying Malicious Behavior from particular seeds and possibly using a thematically fo-
cused crawler in order to harvest pages that fit with the4inter

The decentralized nature of the JXP computation relies 8ft profile of the corresponding user (or user group). Given

the information given by each peer in order to compute tf@at the Web graph is self-similar [25,5], the properties of

global authority scores. However, it is known that in such déhe small graph fragment that a peer eventually compiles

centralized environment peers might cheat in an attemptsiaould be statistically indistinguishable from the praiesr

distort the scores by providing manipulated data in the pe&frthe full Web graph as seen by a centralized crawler. [25]

meetings. In this section we propose an enhanced versfhtserved these properties also across different pasitén

the JXP, that contains a variety of statistical techniques fthe Web graph, including the case where pages were sepa-

detecting suspicious behavior. The enhanced versionedoifiated by their content, which corresponds to using a focused

TrustJXP, is again completely decentralized, and we demd@fawler. We use histograms for storing and comparing the

strate its viability and robustness in experimental regisiee  different scores distributions.

Section 7). TrustJXP does not require any form of coop-

eration among peers. Peers may be arbitrarily egoistic Histograms

malicious, but we assume that the fraction of well behav-

ing peers is significantly larger than the fraction of chegti Histograms provide a compact representation of the scores

peers. TrustJXP can also operate with anonymous peers.distributions. Pages are assigned to histogram buckets ac-
There are many possible forms of attacks or manipuleerding to their JXP scores. Since scores are expected-to fol

tions in a P2P network. low a power-law distribution, we make the boundaries of the
In this paper we focus on attacks where peers wanttackets also exponential, similar to what is used in [7]. &or

distort the authority scores being computed by JXP, by rgrecisely, the bucket numbewill have the boundaries

porting, whenever asked by another peer, wrong scores for . .

a set of pages. We have modeled two types of such score bucketi) = [a-b'"1,a-b')

manipulation: where the values faa andb are 0005 and (B, respec-

1. A cheating peer can report a higher score for some tiyely. We chose these values in order to cover the range of
all of its local pages, in an attempt to get its pages inexpected values for the scores. The precise values dod
high positions in the global ranking that JXP peers mdywill depend on the distribution of PageRank values in the
perceive. In this form of manipulation, the peer woul@bserved sample, which in turn depends on the number of
boost pages at the “expense” of reducing the total weigbages in the entire network and the dampening factor.
of its world node (giving lower score mass to all non- We create, at each peer, a histogram which is initially
local pages). filled with the initial JXP scores of local pages. After each

2. A cheating peer can manipulate the scores of its logaeeting, the distribution of the local scores of the otherpe
pages by permuting the scores. This way, some pagesia@dded to the local histogram. We introduceaelty factor
boosted while others are downgraded. The score m&gsccount for the dynamics of the scores across the meet-
of the world node would stay unchanged. Moreover, thags. Given the local histogram at meetitigH!, and the
statistical distribution of the scores among local pagésore distribution from the other pey the local histogram
would appear identical to the original distribution. S@t meetingt + 1) is updated as follows:
this attack is harder to detect.

_ _ _ HHYD — (1— p)H' 4 pD
In the following subsections we describe how we detect i
and eliminate or compensate the effects of such attacks. ~ Where the parametgrrepresents how much importance
we give to the new values. In our framework we get 0.6.

Since we rely on the assumption that the number of hon-
6.1 Malicious Increase of Scores est peers is significantly bigger than the number of dishones
ones, we expect that the histogram always reflects the true

As we mention earlier, having documents with high authotistribution of the honest peers. If dishonest peers are re-

ity scores can bring many benefits for the peer: with its pag@rting higher scores for some of their local pages, the dis-

appearing at the first positions in the ranking for answerigloution of their local scores would no longer resemble the

queries posted on the network, the probability that a us@ptribution expected over all peers. Therefore, a compari

clicks on one of them is higher, which may translate, for irffon against the accumulated local histogram should give an

stance, in revenue for that peer. indication of this deviation from normal behavior. How we
To combat this kind of manipulation we use the scoré®mpare the distributions is explained in the next subgecti

distributions of the pages in a peer’s local graph. Aftene fe

iterations, the local distributions should resemble tlabgl Comparing Histograms

distribution. The justification for this hypothesis stema

the way the local graph fragments are built. In our P2P modgilyen the accumulated local histogram of a pieét;, and

each peer gathers its data by performing Web crawls, sgartthe histogram containing the scores distribution of anothe
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peerj, Dj, we want to compute how mudby deviates from wherescorg(a) and score(b) are the scores of pages

Hi. Since the distributions are expected to be similar [25,andb at peeri, a < b refers to the lexicographical order

we believe that the distributions of honest peers should bepage URLs (to avoid double-counting),andt; are the

very close to each other, andf; differs fromH; by a large rankings of pages in the overlapping set at peessd j,

margin, it is an indication that the peer is cheating abaut iindA is our tolerance threshold. A good choice/otan be

local scores. For comparing the two distributions we haderived from the dampening factor of the underlying PageR-

chosen thédellinger Distancewhich is defined as [46]: ank model as follows. We consider as our threshold the min-
imum amount of authority mass one page can have, which is
the score mass earned from the random jumps. Therefore, at

HD;; = %[Z(\/Hi(k) — 4 /Dj(k))zﬁ (33) each peeld is set to

where,k is the total number of buckets amtj(k) and A — (1-¢)
Dj (k) are the number of elements at buckeit the two dis- N
tributions, both normalized by the total number of elements

at each distribution. The factor/4/2 is introduced to nor- of pages in the network.

malize to range of possible values. This approach assumes that whenever two peers meet,
As an alternative to the Hellinger Distance, we could al§fiere is a sufficient overlap between their locally knowngsag
use thex< goodness-of-fit test or information-theoretic megy make this comparison statistically meaningful. In an ap-
sures such as Kullback-Leibler divergence. We implementgft-ation where such overlaps cannot be guaranteed with
all variants, and found that the Hellinger Distance gave t fgh probability, we would have to add artificial overlaps
most robust results, but the other methods worked fine, tog: “honesty witnesses”. One way of designing such an addi-
Since it is a metric, Hellinger Distance has nice propertigs,na| set of witness pages would be to randomly draw a set
besides the fact that values can be normalized, which males s mple URLs and disseminate them in the network by an
it easier to be combined with other measures. epidemic protocol or using the overlay network of the P2P
system. This set of witnesses should be changed periogicall
to counter adaptation strategies of malicious peers.

(39)

wheree is usually set to @5 andN is the total number

6.2 Malicious Permutation of Scores

Our histograms comparison is inherently unable to detec& Computing Trust Scores
cheating peer that reports a permutation of the currenescor

of its local pages, since both distributions would be stiatisye now use our trust model to assign trust scores to peers.
cally indistinguishable. For detecting this type of atta The method is totally decentralized: each peer is resptensib
use a dlﬁerent technique. In our experimental studles_f thor assigning (its perception of) trust scores to other geer
JXP algorithm, we have observed that, after a few meetinggsed on interactions with them. During a meeting, peers
although the local JXP scores do not correspond yet to t8gchange the scores of their local pages. These scores are
global authority scores, peers already start having a gogskd for computing both histograms divergence and the rank
notion of the re_Iat|ve ranking of_thelr Ioc_al pages. GlV?Bthdivergence for the overlapping pages. These two measures
fact, a comparison of the relative ranking of pages in bo{f|| determine the level of trust that should be given to the
local graphs should give us hints about cheating attemptspeer. A new trust score is assigned to a peer at every meeting,

We compare the two rankings of the two peers in a megfs scores are changing.
ing for those pages fall into the overlap of both local graphs |t js important to emphasize that our technique relies on
and we measure what we refer to as Tieéerant Kendall's comparing only the scores of the local pages without any
Tau Distancedefined below. further information about peer identity. This charactigis

We use a relaxation of Kendall's Tau since we need {fiakes the algorithm resilient to simple Sybil attacks where
tolerate small fluctuations in the scores of pages with aimegsingle “bad peer” is banned from the network but then re-
identical global authority. To this end, we discount pagespajoins it under a new identity. TrustJXP never considers the
that have different relative orders in the two rankings éith jdentities of peers, and thus has certain immunity agatist t
score differences are below a tunable threshbldn this  simple form of Sybil attacks.

case, we consider the page pair as incomparable and theifFor combining histograms divergence and rank diver-

rank order as arbitrary. _ _ ~gence into one single trust score, we take a conservative
Our Tolerant Kendall's Tau Distance is therefore defineshoice: we always take the lower level of trust among the
as: two measures. Thus, we define the trust score that aipeer

gives to a peef as
K{; =[(a,b) : a< bAscore(a) —scorg(b) > A a4
ATi(a) < Ti(b) ATj(a) > Tj(b)]| 6,j =min(1-HD; j,1-K/;) (36)
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This is the trust score that will be used in the TrustJXRith a manually selected set of pages and after that, new
algorithm, which is presented in the following section.  pages were fetched and automatically classified into one of
10 pre-defined categories such as “sports”, “music”, etc.
We checked the degree of connectivity to assure that the
6.4 Integrating Trust Scores and JXP Scores PR computation was meaningful in these datasets. Figure 3
shows the indegree distribution, on a log-log scale for the
TrustIXP incorporates the trust meas@rato the JXP al- two collections. We can see that the two distributions are
gorithm for computing more reliable and robust authoritglose to a power-law distribution, which is also the staddar
scores. Our approach is to use the trust measure at peer mesgumption for the complete Web graph. We thus expect that
ings when combining the scores lists. For combining tlear experiments, albeit rather small-scale, are fairlydad
scores lists, in the JXP algorithm, whenever a page is ptestve for the behavior at Internet scale.
in both lists, its score will be set to the average of bothasor
or the maximum of the two scores, depending on the ap-

proach chosen. More formally, the score of pagethe up- e 100000
dated score list’ is given by tocee 1 i 10000 | o
g 1000 -‘ 3 1000 \
rn | (La(i)+Lg(i))/2 if “average” £ X R o »
0= { ALl -t e . " _
WhereLA(i) and LB(') are the scores of pa@ﬂt the two ! tl]umberofp_‘aéis 1000 1 10 Nl:t‘:gbe;g?opag;gim 100000
peers. If the page is not in one of the lists, its value is set to (a) Amazon Data (b) Web Crawl

zero on the respective list.
For the TrustJXP algorithm, the contribution of the scoregy. 3 indegree Distributions.
from the other peer are weighted based on how much that
peer is considered to be trustworthy. The score of a page
the updated scores list is now defined as Pages were assigned to peers by simulating a crawler in
each peer, starting with a set of random seeds pages from
) o one of the thematic categories and following the links and
L' (i) = { (1-6/2) +La(i) +6/2xLg(i) if "average” fetching nodes in a breadth-first approach, up to a certain
maxLa(i),0xLg(i)) if “maximum predefined depth. The category of a peer is defined as the cat-
(38) egory to which the initial seeds belong. During the crawling
process, when the peer encounters a page that does not be-
After combining the scores lists, the JXP algorithm prdong to its category, it randomly decides to follow linksrro
ceeds as usual: the relevant information learned from tits page or not with equal probabilities. For both datasets
other peer is added to the world node, and a PR compufig have 100 peers, with 10 peers per category. In the Ama-
tion is performed, leading to new JXP scores. zon setup there is a total of 55,196 pages and 237,160 links,
and in the Web crawl setup we have 103,591 pages and
1,633,276 links. We realize that these are fairly smallesca

7 Experimental Evaluation experiments, but they are nevertheless reasonably iingicat
The reason for the limited data volume is that we had to run
7.1 Setup all 100 peers on a single PC.

We evaluated the performance of the JXP algorithm on a
collection of pages from the Amazon.com website and or7&2 JXP Accuracy And Convergence
partial crawl of the Web graph. The Amazon data contains
information about products (mostly books) offered by Amd-or evaluating the performance we compare the authority
zon.com. The data was obtained in February 2005, and #uares given by the JXP algorithm against the true PR scores
graphs were created by considering the products as nodépages in the complete collection. Since, in the JXP ap-
in the graph. For each product, pointers to similar recorproach, the pages are distributed among the peers and for
mended products are available in the collection. Thesd-poithe true PR computation the complete graph is needed, in
ers define the edges in our graphs. Products are also ctaser to compare the two approaches we construct a total
sified into one or more categories. We have thematicalignking from the distributed scores by essentially merging
grouped together some of the original categories, so in tthe score lists from all peers. (Note that this is done for the
end we had a total of 10 categories (e.g., “computers”, “s@xperimental evaluation, it would neither be needed nor de-
ence”, etc). sired in the real P2P network). We do this periodically after
The Web collection was obtained in January 2005, usiagfixed number of meetings in the network. Since overlaps
the Bingo! focused crawler [58]. We first trained the crawleare allowed and no synchronization is required, it can be the
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case that a page has different scores at different peetdsin  Spearman's Footrule Distance x 10"Linear Score Error
case, the score of the page on the total ranking is conside 15
to be the average over its different scores. 03
The total top-k ranking given by the JXP algorithm an ¢, !
the top-k ranking given by traditional, centralized PR a 05

compared using Spearman’s footrule distance [27], defir 0.1

asF (o, 02)__: zikzl [<10) *_0_2(')| Where o1(i) and oa(i) % 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
are the positions of the pagen the first and second rank- Number of Meetings in the Network  Number of Meetings in the Network
ing. In case a page is present in one of the top-k rankings (a) (b)
and does not appear in the other, its position in the latter is , _ _
considered to b&+ 1. Spearman’s footrule distance is norﬁ}'g-v?/e%%?gmans footrule distance (a) and linear score errofofb)
malized to obtain values between 0 and 1, with 0 meaning '
that the rankings are identical, and 1 meaning that the rank- , _ _
ings have no pages in common. We additionally conside lSpearmans Footrule Distance 12X 107 Linear Score Error
linear score errormeasure, which is defined as the avera —Full Merging _
of the absolute difference between the JXP score and ——~Light-weight Merging
global PR score over the top-k pages in the centralized 05
ranking.
First of all, we studied the general behavior of the JX TP
method, to test whether it serves its purpose as a P2P ® 5000 10000 15000 20000 O 5000 10000 15000 20000
proximation of global PR. Figures 4 and 5 show Spearma. . l\lumber of Meetings in the Network Number of Meetings in the Network
footrule distance and the linear score error for the Amazon _ _
collection and the Web crawl, respectively. Here the scorgd- & Comparison of merging procedures for the Amazon data.
of the top-1000 highest ranked pages were used, and the
charts show the error as a function of the number of pe  Spearman's Footrule Distance x 10~ Linear Score Error
meetings. We see that the error drops quickly as the pe 04
meet other peers. Already at 1000 meetings the footrule ¢ 0.3
tance drops below 0.3 for the Amazon data and below 0.2, . !
the Web crawl. At this point, each of the 100 peers, on ¢
erage, has met and exchanged its graph with 10 other pe 01 QS
Beyond this point, the JXP scores converge to the global 0
values. These observations demonstrate the generalitfiab - number of Mestings in the Netwdrk  Number of Mectings i the Network
of the IXP method.

—Full Merging
- - -Light-weight Merging|

0.8 \.

—Full Merging 15
- - -Light-weight Merging|

—Full Merging
- - - Light-weight Merging

Fig. 7 Comparison of merging procedures for the Web crawl.

Spearman’s Footrule Distance %10 Linear Score Error
1 1.2

needed to perform a merging procedure (for one meeting
0.8 with one other peer). Table 1 presents the average over all
meetings a peer has made. Due to space constraints the re-
sults are shown only for the three biggest and the three small
d d est peers (peers were sorted in decreasing order according
Numbel?gfol(\)/leét(i)r?gginlgw%ogetzveg?ko Numbel?gfol(\)/leét(i)r?gginlgw%ogetzveg?ko the their number_s of IocaIIy held pages). Similar Improve-
ments were obtained for all the other peers as well. As ex-
@ () pected, the time needed for the merging procedure drops sig-
nificantly when we use the light-weight merging.

0.5

Fig. 4 Spearman'’s footrule distance (a) and linear score errofotb)
the Amazon data.

Table 1 CPU time comparison (in milliseconds) between the full
We then evaluated the performance of the proposed lighterging and the light-weight merging procedures.

weight merging procedure against the full merging of the Amazon.com Subset of Web
baseline JXP method. The results are shown in Figures 6 Original [Light-weight [Original [Light-weight
and 7. Merging | Merging Merging Merging
The charts show that the results are almost unaffected if £€€" 1 | 2,480 853 31444 1 24,943
- . Peer2 | 2,337 813 26,024 19,364
the graphs are not merged. The small error inserted in the peer 3 | 21230 648 17718 | 13687
scores did not affect the ranking order of the pages. The perfPeer 98 | 756 87 1,864 229
formance, however, is highly enhanced, as Table 1 shows|Peer99 | 725 76 1,776 162
We measured, for each peer, the CPU time (in milliseconds)Peer 100] 683 56 1,403 98
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[iN
&

Using the light-weight merging procedure, we then cong04 ey T— _ flo’
pared the performance of the two approaches for combinig A\ |- without pre_MeetingJ
the score lists. Figure 8 shows the linear score error, wheée|
the solid line corresponds to the approach where we fir;%b.z
average the scores and then, after the PR computation, ge-
weight the ones corresponding to pages that do not bequp@l
to the local graph, and the dashed line is the result for whgn , 06
we always take the bigger score, when combining the lists, O 1000 inas 2200 Neroo00 0 1000 inas 2000 Nen o0

s Number of Meetings in the Network Number of Meetings in the Network
and leave the scores of external pages unchanged after the

PR computation was performed. Here again, we used g 10 Comparison of peer selection strategies for the Web craw.
scores of the top-1000 pages.

—With Pre-Meetings
- - Without Pre-Meetings

s
w

=
[N

o
©

.......

Linear Score Error

» footrule distance drop below 0.2 we needed a total of 1,770

x 10~ Linear Score Error 15210 ‘ meetings without the pre-meetings phase. With the preinget
1.2 . —Averaging .

— Averaging 3 - - Taking bigger score phase this number was reduced to 1,250. In the Web crawl

---Taking Bigger Score

o

0.8 ® setup, for a footrule distance of 0.1, the number of meetings
g1t was reduced from 2,480 to 1,650. Itis clear that the peer se-
0.4 %00 lection strategy plays a big role not only on the convergence
__________ 57 - speed of the JXP algorithm but also on the network load. By
85000 10000 15000 20000 075 o2 finding the most promising peers, many meetings with peers

Number of Meetings in the Network Number of Meetings in the Network  that would contribute only marginally useful informatiorea

(a) Amazon data (b) Web crawl avoided.

Even though these optimizations significantly reduce the
Fig. 8 Comparison of the methods for combining the score lists.  network load, the JXP algorithm still requires a considkrab
number of meetings. However, the size of the transmitted
[nessages is small, since, for the JXP computation, no page
content is required. We measured, for the same setups pre-

bining the score lists by the one proposed in Section 42 nted before, the message size pf a peer at each meeting.
They also suggest that the amount of improvement that gures 11 an_d 1.2 show the median, the first quartile and
be obtained is related to the collection itself. The most ﬁ% third qgartlle (in KBytes) for the values at all peerseaf
teresting and most important improvement However is o%ffwh meeting they have performed. We also compare the two
. . o ' eer selection strategies, with and without the pre-mgstin
tained by the peer selection strategy, discussed next. h
: . phase.
Figures 9 and 10 present the performance compans%n
between the two peer selection strategies, with the praingse
phase and without the pre-meetings phase, where peers are 180
chosen at random, for the Amazon data and the Web craw, 160
respectively. For the Web crawl we considered the top-1004Q |
pages, and for the Amazon data we compared the top-100Q0

The results show that authority scores converge faste
the global PR values when we replace the method for co

120

£

pageS. é 100 | ﬁ 100

% 80 4 i; 80

* 60 1 . 60

Spearman’s Footrule Distance -4 Linear Score Error

1 1.2X 10 404 1. Quartile 40 - 1. Quartile
0.9 —With Pre-meetings —With Pre-meetings 20 | == Median 2 'f'g"eg‘a"t_l
- --Without Pre-meetings 08 - --Without Pre-meetings , - 3. Quartile . - duartle

R R I ST I IR RO
0 Meetings per Peer Meetings per Peer
4 (a) Without pre-meetings (b) With pre-meetings

Fig. 11 Message size (in KBytes) for the Amazon data setup.

% 5000 10000 15000 20000 % 5000 10000 15000 20000
Number of Meetings in the Network Number of Meetings in the Network

The results show that JXP consumes rather little net-
Fig. 9 Comparison of peer selection strategies for the Amazon da'[aWork bandwidth, as the m_essages sizes are small. We C"?‘”
also see that the pre-meetings phase causes only a small in-
crease of the number of transmitted bytes, since it requires
We can see that during the first meetings both approactlies exchange of the min-wise independent permutation vec-
perform similarly, but as peers discover, through the prtoers only. Although the messages transmitted with the pre-
meetings, the most promising peers, the number of meetimgeetings phase are slightly bigger, the overall networkiban
needed for a good approximation to the global PR scone&th consumption drops significantly, since fewer meeting

is reduced. For instance, in the Amazon data, to make #e performed. For the Amazon data, the total message cost
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000 /5 1. Guartie 1000 . We can see that Spearman’s footrule distance and the co-
s | —tedn o] X ouarle sine measure are not affected by the different choices, of
X 3. Quartile T " . . . . .
LT _ rop KA which is an indication that the JXP scores are affected only
3% 3 o0 by a rescaling factor, and that the ranking order is notadter
2 2 500
9 400 @ 400
: 300 * a0 |
200 200 7.4 TrustIXP Performance
100 100
e m o ow W o o m o w e =N these experiments we created malicious peers by “cléning
leetings per Peer leetings per Peer . .
(a) Without p:e‘imeetings (b) With preg-r;leetings some of the already existing peers as follows. The number of
Fig. 12 Message size (in KBytes) for the Web crawl setup. malicious peers was varied in the experiments (see below).

Each malicious peer copied the local graph from one of the

. 100 good peers. It cheats at all meetings by either reporting
to make the footrule distance drop below 0.2 was arou igher score for all or some of its local pages, or by per-

461MBytes with the pre-meetings phase, compared 10 thying the scores among its pages. Malicious peers perform

569MBytes transmitted when meetings were performed dhetings and local PageRank computations like any normal
random —a reduction of almost 20%. In the Web crawl, t:&feer. The difference is that, when asked by another peer for
decrease in the amount of bytes transmitted, for a foOtre gcqres Jist, a malicious peers will lie about the scoffes o
distance of 0.1, was about 30%, from 4.59 to 3.22 GBYI&§; |oca| pages. In the experiments, peers do not change thei
We emphasize that these values are the total number of byiegaior during the TrustJXP computation; for example, if

over all meetings performed. Recall that the cost per mgeti oo chooses to permute its scores for the first meeting,
is small and the time interval between two sucessive megt

will do so for all subsequent meetings and it will appl
ings can be adapted to the available bandwidth. al\\/,vv;ys the same perl:nuta?i%n. "9 Wit apply

Starting from the setup with 100 honest peers we first
) o introduced 10 cheating peers. Each of these 10 peers uses
7.3 Effects of Misestimating the Global Number of Pages gne of the possible attacks by uniformly random choice, (i.e.

with each one of three types of misbehavior having proba-
Here we again measured Spearman’s footrule distance @y 1/3 to be chosen by a dishonest peer):
the Linear Score Error at the top-1,000 for the JXP and PR .
global rankings for the Web collection. Additional we have Sort?er?eersha!ways re[?ort l?C"’u ]]IXI: shcc_)r?s thlat are twice
computed the L1 norm for the JXP ranking vector and the as high as their true values for all of their local pages.
cosine between the full ranking vectors of JXP and PR. Since Some peers alway_s report these falsely boosted scores
the scores are normalized, the L1 norm for the global PR for only half of their local pages (drawn randomly but

vectoris 1. Figure 13 shows the results for valueX efjuals used consistently throughout all meetings).
toN, 10N, 5N and 05N. — Some peers always permute their scores list.

We kept this setup of mixed behaviors, and increased the
number of dishonest peers from 10 to 50. The results of this

Spearmans Footrule Distance Linear Error Score

x10™*

04 e ey experiment, when using standard JXP without countermea-
o s St e o) sures to cheating, are shown in Figure 14. We clearly see
\ -1 X=10N (=0.1 PSS S LS P that, with the introduction of malicious peers and without

02 any trust mechanism, the JXP scores do no longer converge
to the true global PageRank values. The mathematical anal-
ysis of the JXP algorithm given in Section 5 proved that the

JXP scores are upper-bounded by the true PageRank scores.

0.1

0 0
0 2000 4000 6000 8000 10000 [ 2000 4000 6000 8000 10000

Number of Meefings in the Network Number of Meetings i the Network With malicious peers reporting scores that are higher than

(a) (b) the true ones, there is no bound for the scores. This effect

) Cosine , L1 Norm can escalate; _it_ distorts the world-node score and the tran-
—nD Ve o sosemereess sition probabilities from the V\_/orld nodg to the Ioc_ql pages,
055 e S -=-X<05N (=) and can even lead to a negative transition probability fer th
- X=10N (=0) XN (o) word node’s self loop. At this point, scores start becoming

0.9

undefined; this is the point where the linear-error, cosine,

1/——’—‘—— and L1-norm curves stop.

0.85

08 We proceeded by testing our trust model, measuring both

08 2000 4000 6000 8000 10000 % 2000 4000 6000 8000 10000 hiStOgramS diVergence and rank divergence for the Overlap-
Number of Meetings in the Network Number of Meetings in the Network . . . .

© d) ping pages. We again introduced 50 cheating peers, but now

all peers performed the same type of attack. Figures 15 and
Fig. 13 Experimental results for differept equals taN, 0.5N, 5N and 16 show the Hellinger Dlstarjce and the Tolerant Kgnda_ll’s
10N. Tau for the case where cheating peers report scores five times



18 Josiane Xavier Parreira et al.

Spearman’s Footrule Distance %10 Linear Score Error Histograms Divergence
1 T T T
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Fig. 14 Impact of Malicious Peers with Original JXP.

higher than the true ones, and for the case where peers per-
mute their scores, respectively. In these graphics a garen (
light grey) “plus” symbol denotes that an honest peer met
another honest peer, and a red (or black) “square” symbol
means that an honest peer met a cheating peer. Meetings per-
formed among dishonest peers are not shown for the sake of (®)
clarity. The results confirm our hypothesis that comparir}g
histograms can be an effective indicator of cheating behav?'
ior with increased scores. We can also see that, when scores

are permuted, the histogram approach does no longer wailfifledged search engine with its own crawler, indexed an

and the rank divergence provides a better indication of sugfiery processor. Peers are autonomous in compiling their

malicious behavior. _ _ _ . own content using a focused Web crawler. A Web query is-
Finally, we repeated this experiment with 50 maliciougyed by a peer is first executed locally on the peer's own

peers, and used our TrustJXP method for computing log@ntent, and then possibly routed to a small number of re-
scores. The histograms and rank divergence, as well as th&e peers for additional results.

final TrustJXP scores are shown in Figure 17, and the per- 14 gemonstrate the viability and utility of JXP within

formance of the TrustJXP algorithm is illustrated in Figurghe Minerva testbed, we performed a simple and preliminary
18. ) ) experiment. Here we have used again our Web collection,
For measuring how effective a trust model can be at &yt in a different setup. We have created 40 peers out of the
we simulated the “ideal” case, with an oracle-based defenggcategory sets by splitting each set into 4 fragments. Each
mechanism that knows the status of each peer (honest ySine 40 peers hosts 3 out of 4 fragments from the same
cheating) and thus can detect bad behavior with 100 percgfjic, thus forming high overlap among same-topic peers. In
accuracy. The results for the ideal case are also showndgy| there were 250,760 documents and 3,123,993 links.
Figure 18. Of course, t.he ideal behavior cannot be |mpl_e— Then we ran 15 queries that are typical for popular Web
mented in practice, but it serves as a gold-standard yakdstiearch requests [13], using the query routing mechanism of
for our methods. We can see that, for most of the metrics, Qifinerva. The merged results were ranked in two ways: 1) by
TrustJXP method is fairly close to the ideal case in terms gigiandard IR model based on term frequency (tf) and inverse
detecting and compensating malicious peers. document frequency (idf), and 2) by a weighted sum of the
tf*idf score and the JXP score (with weight 0.6 of the first
component and weight 0.4 of the second component). The
7.5 IXP in P2P Search queries were taken from [13] and have been intensively used
in prior literature on link analysis. We manually assesbéed t
The JXP algorithm has been integrated into the Minerva syslevance of the top-10 results under the two different+ank
tem, a prototype platform for P2P Web search under degs. Given the small size of the collection, we considered
velopment in our institute [10,8]. Each Minerva peer is pages with links to relevant pages not reached by the crawler

1000 2000 3000 4000 5000
Number of Meetings in the Network

15 Histograms and rank divergence with Increased-Scoreslitta



The JXP Method for Robust PageRank Approximation in a Re€eer Web Search Network 19

Histograms Divergence Histograms Divergence
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Fig. 16 Histograms and rank divergence with Permuted-Scores iAttac 1 : ‘
0.8
also as relevant pages. The results for precision at topel0 a m b
given in Table 2. The best results are shown in boldface. On 051 % %%ﬁng- e u
average, the standard tf*idf ranking achieved a precisfon o s oo “,““ 5
40%, whereas the combined tf*idf/JXP ranking was able to 0.4 50 5
increase precision to 57%. ziiﬁf T
0.2 - “ sod g o
Table 2 Precision at top-10 for the Web Collection % 138% ber Ogg;égetings?;g?ge Net v@gﬁ? 5000
| Query [ tFidf [ (0.6 tridf + 0.4 IXP) | (©
affirmative action] 40% 40%
amusement parks 60% 60% Fig. 17 Histograms divergence, rank divergence and trust scoess. R
armstrong 20% 80% dom forms of attack
basketball 20% 60%
blues 20% 20%
censorship 30% 20% .
cheese 40% 60% 8 Conclusions
iraq war 50% 30%
jorcliand_ gg{‘)’//‘) ‘7‘82? This paper has presented the JXP and TrustJXP methods for
M s | 300 100% robust and efficient computation of approximate PageRank
roswell 30% 70% scores in a fully decentralized manner that blends well with
search engines | 20% 60% P2P networks where peers are autonomous and the local data
shakespeare 60:’)/0 802A) collections of peers may overlap. Our methods are versatile
table tennis 5OOA’ 700A’ and could be easily adapted to computer other kinds of au-
| Average | 40% | 2% thority and trust measures that are based on Eigenvectors in

some form of social network. A salient property of JXP is
its scalability: regardless of how large the network became
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g >Pe2man's Footrule Distance 4 10 Hinear Score Erfor local processing costs. Despite the relatively small sofle
)\ T Our T oce Tl our experiments (caused by limitations of our experimen-
0.3/ No Trust Model 8l Lo NoTnstmodel | . tal machinery), we are very confident that, by the design of

our methods and their salient properties, JXP will exhibit
very good scalability in real-life large-scale environrneeas
well. We are working on setting up larger-scale experiments
95000 10000 15000 20000 O 5000 10000 15000 20000  inour lab and also with external collaboration partners ove
Number of Meetings in the Network ~ Number of Meetings in the Network wide-area Internet connections. The experimental refilts

(@) (b) TrustJXP in the presence of dishonest peers are preliminary
Cosine L1 Norm at this point but very encouraging. We can effectively detec
2 (e Trevioaai and counter a certain degree of cheating, under several at-

- - Our Trust Model e tacker models. But we surely realize also the limitations of

No Trust Model P

v A e L5 the approach so far: if the fraction of misbehaving peers be-
0.9 S L comes excessive, no countermeasure whatsoever will be able
i —— Ideal Trust Model . .
0.85 - =-Our Trust Model to compensate the adverse effects of bad peers. Similarly,

No Trust Model

0g 0 our attacker models themselves are limited at this poirt, an
’ 5000 10000 15000 20000 5000 10000 15000 2000 i i Tale] i
Number of Meetings in the Network  Number of Meetings in the Network we will strive for a better, prlnC|pIed understandmg of the

q ways that peers can attempt to cheat and manipulate others

© () in such kinds of Web and social graph structures embedded
Fig. 18 Impact of Malicious Peers with TrustJXP Method. in P2P networks. . . . .
For our future work, in addition to deeper studies of mis-
behavior and further improvement and extension of TrustJXP

d'i plan to explore how JXP performs in scenarios with very

the (order of the) resource commitments that the peer lﬂi h c:]ynalm'iacsl. Th'ias incll;]des ?Oth datahr_:mr? networ:!f dynam-

made for hosting its local data collection and graph fragméefS: The global Web graph evolves at a high rate while we are

anyway. Also, the messaging costs for peer meetings ge(rymg out P2P computations of the JXP style. The chal-
e

very small. JXP scores provably converge to global Pagelg9€ here is twofold: on one hand, we want capture recent
ank values. The convergence speed depends on the neth(ﬁQdS in this process anq derive global authority measures
are as fresh as possible; on the other hand, we need to

size, but we have developed smart peer-meeting strate h% h sied b . d
that accelerate convergence as demonstrated in our ex fike sure that we are not misled by a moving target and our

ments. Finally, for robustness to peers that may cheat wH&gultare not distorted by the fast evolution of the undegy

exchanging information in a peer meeting, our TrustJXP ef@ta- As for network dynamics, the main problem to tackle
tensions provide effective means to combat various forms'SfNe so-calleq churn pheno_menon: PEETS Join and leave the
misbehavior. network at a high rate and W|thout_g|vmg notice. We want to
We presented the JXP algorithm for dynamically Coms_afegyar_q JXP against these rapid and unpredictable forms
puting authority scores of pages distributed in a P2P ng{_varlablllty.
work. It runs at every peer, and works by combining locally

computed PR scores with meetings among the peers in e rences
network. Through experiments as well as theoretical argu-
ments we showed that the JXP scores converge to the true PRaperer, k.: P-grid: A self-organizing access structuwep2p in-
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