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Abstract Link analysis on Web graphs and social networks
form the foundation for authority assessment, search result
ranking, and other forms of Web and graph mining. The
PageRank (PR) method is the most widely known member
of this family. All link analysis methods perform Eigenvec-
tor computations on a potentially huge matrix that is de-
rived from the underlying graph, and the large size of the
data makes this computation very expensive. Various tech-
niques have been proposed for speeding up these analyses
by partitioning the graph into disjoint pieces and distribut-
ing the partitions among multiple computers. However, all
these methods require a priori knowledge of the entire graph
and careful planning of the partitioning.

This paper presents the JXP algorithm for computing
PR-style authority scores of Web pages that are arbitrarily
distributed over many sites of a peer-to-peer (P2P) network.
Peers are assumed to compile their own data collections, for
example, by performing focused Web crawls according to
their interest profiles. This way, the Web graph fragments
that reside at different peers may overlap and, a priori, peers
do not know the relationships between different fragments.
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The JXP algorithm runs at every peer, and it works by
combining locally computed authority scores with informa-
tion obtained from other peers by means of random meet-
ings among the peers in the network. The computation on
the combined input of two peers is based on a Markov-chain
state-lumping technique, and can be viewed as an iterative
approximation of global authority scores. JXP scales with
the number of peers in the network. The computations at
each peer are carried out on small graph fragments only, and
the storage and memory demands per peer are in the order of
the size of the peer’s locally hosted data. It is proven that the
JXP scores converge to the true PR scores that one would
obtain by a centralized PR computation on the global graph.

The paper also discusses the issue of misbehaving peers
that attempt to distort the global authority values by provid-
ing manipulated data in the peer meetings. An extended ver-
sion of JXP, coined TrustJXP, provides a variety of counter-
measures, based on statistical techniques, for detecting sus-
picious behavior and combining JXP rankings with reputation-
based scores.

Keywords link analysis, Web graph, peer-to-peer systems,
social reputation, Markov chain aggregation

1 Introduction

1.1 Motivation and Problem

Peer-to-peer technology is a compelling paradigm for large-
scale file sharing, publish-subscribe, and collaborative work,
as it provides great scalability and robustness to failuresand
very high dynamics (so-called churn) [60]. Another inter-
esting P2P application could be Web search: spreading the
functionality and data of a search engine across thousands or
millions of peers. Such an architecture is being pursued in a
number of research projects (e.g., [63,24,10,35,8,53]) and
could offer various advantages: i) lighter load and smaller
data volume per peer, and thus more computational resources
per query and data unit, enabling more powerful linguistic or
statistical learning methods; ii) with each peer being close to
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the human user and the user trusting its local software and
controlling the degree of sharing personal information and
collaboration with other peers, there is a great opportunity
for leveraging user behavior such as explicit or implicit feed-
back in the form of query logs, click streams, or bookmarks;
iii) a decentralized approach could provide better immunity
to search result distortion by the bias of big providers, com-
mercial interests, or even censorship.

Social communities is another concept that has lately
been explored to improve the search experience (e.g., del.icio.us,
flickr.com, myweb.yahoo.com, etc.). With billions of peo-
ple from the different parts of the world contributing with
their input, the task of identifying the “hot spots” of a com-
munity becomes crucial. The community users interact in
a way that results in community graphs that allow author-
ity analyses similar to popular PageRank-style analyses on
Web graphs [19]. Such community graphs naturally arise in
various applications, by different means of user interaction,
with respect to a wide variety of entities, and with varying
notions of authority (e.g., product ratings, opinions on other
people’ blogs or photos, bibliographic references, etc.).

PageRank-style authority scoring, based on the Eigen-
space analysis of a suitably defined graph of Web links, en-
dorsements, or interactions, is an established tool for rank-
ing information units (Web pages, sites, peers, social groups,
etc.) by their relative importance [19,13,44]. As Google has
impressively demonstrated, such authority information can
be exploited for improved ranking of search results.

Recently, various techniques have been proposed for speed-
ing up these analyses by distributing the link graph among
multiple sites [36,64,2]. In fact, given that Web data is orig-
inally distributed across many owner sites, it seems a much
more natural (but obviously also more challenging) com-
putational model to perform parts of the PR computation
right where the data originates from followed by smaller dis-
tributed computation for combining the local results in an
appropriate way. Exploiting a block structure in the link ma-
trix is an example [36]. However, these advanced methods
work only when the overall Web graph is nicely partitioned
into disjoint fragments, which is the case when partitions are
formed by the sites that own the pages.

In this paper we address the problem of computing PR
in a general P2P setting with potentially overlapping graph
fragments distributed across peers of a large network. We
consider the architecture of a P2P search engine where each
peer is autonomous, crawls Web fragments and indexes them
locally according to the user’s interest profile, and collabo-
rates with other peers for query routing and execution. Queries
would often be executed locally on the user’s personalized
“power search engine”, and occasionally forwarded to other
peers for better results. In such a setting, PR-style scoresare
still crucial for the ranking of search results, but the local
Web fragment of a peer may be too small or incomplete for
a meaningful link analysis. Distributed PR computations of
the kind mentioned above seem natural, but they work only
for disjointly partitioned graphs; in our setting we face the

additional complexity posed by the fact that the graph frag-
ments of different peers may arbitrarily overlap.

1.2 Contribution and Outline

JXP (Juxtaposed Approximate PageRank) is an algorithm
for coping with the above situation: dynamically computing,
in a decentralized P2P manner, global authority scores when
the Web graph is spread across many autonomous peers with
arbitrarily overlapping graph fragments and the peers are a
priori unaware of other peers’ fragments. In the JXP algo-
rithm, each peer computes the authority scores of the pages
that it has in its local index, by locally running the stan-
dard PR algorithm. A peer gradually increases its knowledge
about the rest of the network by meeting with other, ran-
domly chosen, peers and exchanging information, and then
recomputing the PR scores of local interest. This process, in
principle, runs forever, and experiments have indicated that
the resulting JXP scores quickly converge to the true, global
PR scores.

For further improving the network performance, we pro-
pose a heuristic strategy for guiding the choice of peers fora
meeting. The improvements can be observed in our experi-
mental results with real-world data collections. We provide a
mathematical framework for the analysis of JXP, where im-
portant properties are derived and it is proven that the JXP
scores converge to the true global PR scores. Applications of
the algorithm are also given, where we have integrated the
JXP scores into a P2P search engine in order to improve the
ranking of the results.

Since high authority scores can bring benefits for peers,
it is expected that malicious peers would try to distort the
correctness of the algorithm, by providing different (usually
higher) scores for some of their local pages. P2P networks
are generally vulnerable to malicious agents that can cheatin
order to get more benefits. [48] points out that P2P architec-
tures for information sharing, search, and ranking must inte-
grate a completereputation systems. Reputation systems op-
erate by collecting information on the behavior of the peers,
scoring each peer based on good vs. bad behavior, and allow-
ing the system to take countermeasures against suspicious
peers.

In this work we also present a trust model that integrates
decentralized authority scoring with an equally decentral-
ized reputation system. Our approach is based on anomaly
detection techniques that allow us to detect a suspicious peer
based on the deviation of its behavior from some common
features that constitute the usual peer profile. Our method
combines an analysis of the authority score distribution and
a comparison of score rankings for a small set of pages. The
JXP algorithm is then enhanced to avoid the impact of mali-
cious peers. We call this enhanced versionTrustJXP.

Preliminary results of this research have been presented
in [52,51]. The current paper extends these prior conference
publications in the following ways: 1) We provide additional
detail in the mathematical analysis of the JXP algorithm, in-
cluding a discussion of its robustness to misestimated input
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parameters, most notably, the estimate of the total number
of Web pages. 2) We provide methods for making JXP ro-
bust to dishonest peers that aim to manipulate the data that is
exchanged among peers at peer meetings, and we show the
effectiveness of the techniques for detecting and compensat-
ing various forms of misbehavior in experiments.

The rest of the document is organized as follows. Section
2 discusses related work. A more detailed explanation of the
JXP algorithm is given in Section 3. The extensions and run-
time improvement of JXP are discussed at Section 4, and the
mathematical analysis is given at Section 5. The trust model
and the TrustJXP algorithm are presented at Section 6. Ex-
perimental results are described in Section 7, and Section 8
concludes the paper with ideas for future work.

2 Related Work

2.1 Link Analysis

Link-based authority ranking has received great attentionin
the literature. It has started with the seminal works of Brin
and Page [14] and Kleinberg [41], and after these, many
other models and techniques have followed. Good surveys
of the many improvements and variations are given in [19,
45,13,11].

2.1.1 PageRank

The basic idea of PR is that if pagep has a link to pageq
then the author ofp is implicitly endorsingq, i.e., giving
some importance to pageq. How muchp contributes to the
importance ofq is proportional to the importance ofp itself.

This recursive definition of importance is captured by the
stationary distribution of a Markov chain that describes a
random walk over the graph, where we start at an arbitrary
page and in each step choose a random outgoing edge from
the current page. To ensure the ergodicity of this Markov
chain (i.e., the existence of stationary page-visit probabili-
ties), additional random jumps to uniformly chosen target
pages are allowed with small probability(1− ε). Formally,
the PR of a pageq is defined as:

PR(q) = ε× ∑
p|p→q

PR(p)/out(p)+(1− ε)×1/N

whereN is the total number of pages in the link graph,
PR(p) is the PR score of the pagep, out(p) is the outdegree
of p, the sum ranges over all link predecessors ofq, and
(1− ε) is the random jump probability, with 0< ε < 1 and
usually set to a value like 0.85.

PR values are usually computed by initializing a PR vec-
tor with uniform values 1/N, and then applying a power it-
eration method, with the previous iteration’s values substi-
tuted in the right-hand side of the above equation for evalu-
ating the left-hand side. This iteration step is repeated until
sufficient convergence, i.e., until the PR scores of the high-
authority pages of interest exhibit only minor changes.

2.1.2 Distributed PageRank

With the advent of P2P networks [1,62,54,55] attention to
distributed link analysis techniques has been growing.

In [64], Wang and DeWitt presented a distributed search
engine framework, in which the authority score of each page
is computed by performing the PR algorithm at the Web
server that is the responsible host for the page, based only
on the intra-server links. They also assign authority scores to
each server in the network, based on the inter-server links,
and then approximate global PR values by combining lo-
cal page authority scores and server authority values. Wu
and Aberer [66] pursue a similar approach based on a lay-
ered Markov model. Both of these approaches are in turn
closely related to the work by Haveliwala et al. [36] that
postulates a block structure of the link matrix and exploits
this structure for faster convergence of the global PR com-
putation. A fundamental approach to distributed spectral de-
composition of graphs is given by Kempe and McSherry
[40], where distributed link analysis would be a special case
of the presented mathematical and algorithmic framework.
Related methods that can compute authority and centrality
measures on a variety of directed and undirected graph struc-
tures are given by Canright et al. [18]. All these methods re-
quire and build on particular distribution of pages among the
sites where the graph fragments have to bedisjoint, which
makes them suitable for certain classes of distributed sys-
tems and also for accelerating link analysis on a cluster of
computers, but less attractive for a P2P environment. In a
P2P network, disjoint partitioning would be a strong con-
straint, given that in most P2P networks peers are completely
autonomous and crawl and index Web data at their discre-
tion, resulting in arbitrarily overlapping graph fragments.

Chen et al. [20] proposed a way of approximating the
PR value of a page locally, by expanding a small subgraph
around the page of interest, placing an estimated PR at the
boundary nodes of the subgraph, and running the standard
algorithm. This approach assumes that the full link structure
is accessible at a dedicated graph server. In a P2P scenario,
however, this algorithm would require the peers to query
other peers about pages that have links to their local nodes,
and pages that point to pages that point to local pages, and so
on. This would be a significant burden for a highly dynamic
P2P network. The JXP algorithm, on the other hand, requires
much less interaction among peers, and with the new peer
selection strategy, the number of interactions is even smaller.

Other techniques [43,21] for approximating PR-style au-
thority scores with partial knowledge of the global graph
use state-aggregation technique from the stationary analy-
sis of large Markov chains. These techniques have been de-
veloped for the purpose of incremental updates to authority
scores when only small parts of the graph have changed. Dy-
namic computation in a P2P network is not an issue in this
prior work. Another work related to this topic is the one by
Broder et al. [17], where they have presented a graph ag-
gregation method in which pages are partitioned into hosts
and the stationary distribution is computed in a two-step ap-
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proach, combining the stationary distribution inside the host
and the stationary distribution inter-hosts.

A storage-efficient approach to computing authority scores
is the OPIC algorithm developed by Abiteboul et al. [3].
This method avoids having the entire link graph in one site,
which, albeit sparse, is very large and usually exceeds the
available main memory size. It does so by randomly (or oth-
erwise fairly) visiting Web pages in a long-running crawl
process and performing a small step of the PR power it-
eration (the numeric technique for computing the principal
Eigenvector) for the page and its successors upon each such
visit. The bookkeeping for tracking the gradually approxi-
mated authority of all pages is carried out at a central site,
the Web-warehouse server. This is not a P2P algorithm ei-
ther.

In [56], Sankaralingam et al. presented a P2P algorithm
in which the PR computation is performed at the network
level, with peers constantly updating the scores of their lo-
cal pages and sending these updated values through the net-
work. Shi et al. [57] also compute PR at the network level,
but they reduce the communication among peers by distribut-
ing the pages among the peers according to some load-sharing
function. In contrast to these P2P-style approaches, the JXP
algorithm performs the actual computations locally at each
peer, and thus needs a much smaller number of messages.

2.2 Trust Models

A general framework for different types of trust and distrust
propagation in a graph of Web pages, sites, or other entities
is introduced in [30]. TrustRank [33] is a PageRank-like au-
thority measure based on manually labeling a seed of highly
trusted hosts, and then propagating that trust to other hosts.
This algorithm allows estimating the amount of trusted score
that each Web page receives and indirectly evaluating also
the amount of score received by spammers. In [65,31], the
original TrustRank idea has been further extended.

Detecting and combating Web link spam is a special, but
highly important case of reasoning about trust and distrust.
[32] gives a taxonomy of the most important spamming tech-
niques. A number of algorithms have been presented in order
to fight spam. Most of them (see, e.g., [7,26,6,65,31]) an-
alyze the statistical properties of the link structure induced
by the Web and classify as spam those pages that exhibit
statistically significant local deviations in these properties.

The problem of untrustworthy or manipulated content is
felt even more in a P2P environment [60]. The complete lack
of accountability of the resources that peers share on the net-
work offers an almost ideal environment for malicious peers
and forces the introduction of reputation systems that helpto
assess the quality and trustworthiness of peers. In [48], the
authors present a complete overview of the issues related
to the design of a decentralized reputation system. Eigen-
Trust [37] is one of the first methods introduced to assign a
global trust value to each peers, computed as the stationary
distribution of the Markov chain defined by the normalized

local trust matrix C whereci j is the local trust value that a
peer j assign to a peerj . Extensions towards distributed and
non-manipulable EigenTrust computations are presented in
[4]. The anomaly detection procedure described in [59] ana-
lyzes peer activity on the network in order to identify peers
whose behavior deviates from the typical peer-traffic pro-
file (e.g., duration of connections, uploaded bytes, etc). In
[50] the authors present SeAl, an infrastructure designed for
addressing the problem of selfish peer behavior. It works
by combining a monitoring/accounting subsystem, an audit-
ing/verification subsystem, and incentive mechanisms. An-
other framework for reputation-based trust management is
presented in [67], where peers give feedback about other
peers’ good or bad behavior and various forms of network-
wide trust measures can be derived in a P2P-style distributed
computation.

3 The JXP algorithm

The goal of the JXP algorithm is to approximate global au-
thority scores by performing local computations only, with
low storage costs, and a moderate number of interactions
among peers. It runs on every peer in the network, where
each peer stores only its own local fragment of the global
graph. The algorithm does not assume any particular assign-
ment of pages to peers, and overlaps among the graph frag-
ments of the peers are allowed.

The idea of the algorithm is simple, yet it is quite pow-
erful. Starting with the local graphG of a peer, the peer first
extendsG by adding a special nodeW, calledworld node
since its role is to represent all pages in the network that do
not belong toG. An initial JXP score for local pages and the
world node is obtained by running the PR algorithm in the
extended local graphG′ = G+W. The results are stored in
a score listL. This initialization procedure is described in
Algorithm 1.

Algorithm 1 JXP Initialization Procedure
1: input: local graphG and est. size of global graphN
2: n← size(G)
3: Create world nodeW
4: score(p|p∈G)← 1/N
5: score(W)← (N−n)/N
6: G′← (G+W)
7: PR← PageRank(G′)
8: L← PR

JXP assumes that the total number of nodes in the global
graph is known or can be estimated with decent accuracy.
This is not a critical assumption; there are efficient tech-
niques for distributed counting with duplicate elimination,
and we show later in this paper that a wrong estimate of the
number global graph size only causes a rescaling on the JXP
scores, while the ranking order of the pages is preserved.

The world node has special features, regarding its own
score and how it is connected to the local graph. As it rep-
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resents all the pages not indexed by the peer, we take all the
links from local pages to external pages and make them point
to the world node. In the same way, as the peer learns about
external links that point to one of the local pages, we assign
these links to the world node. (This is when the peer meets
with another peer). For a better approximation of the total
authority score mass that is received from external pages, we
weigh every link from the world node based on how much
of the authority score is received from the original page that
owns the link. Another special feature of the world node is
that it contains a self-loop link, that represents links from
external pages pointing to other external pages. The score of
the world node is equivalent to the sum of the scores of the
external pages. During the local PR computation the proba-
bility of a random jump to the world node is also set propor-
tional to the number of external pages.

Since local information is not sufficient to estimate global
scores, peers improve their knowledge by meeting other peers
in the network and exchanging the information they cur-
rently have, namely the extended local graph and the score
list. The information is then combined by both of the two
meeting peers, asynchronously and independently of each
other. This works as follows. A new graph is formed from
the union of both local graphs. World nodes are also uni-
fied to create a new world node that is connected to the new
graph. The union of two world nodes consists of taking the
union of the links that are represented in them and removing
those links that already appear at the graph to which the new
world node will be attached to, so multiple representations
of the same link are avoided.

More formally, letGA(VA,EA) be the local graph at peer
A, whereVA andEA are the sets of pages and links, respec-
tively. Let WA(TA) be the world node attached to peer’sA
local graph, whereTA is the set of links represented at the
world node. When peerA exchange information with peer
B, they both create locally a merged graphGM(VM,EM),
whereVM = VA∪VB andEM = EA∪EB, and a new merged
world nodeWM(TM) that is connected toGM, whereTM =
(TA∪TB)−EM, i.e., the set of links outgoing from pages
that are not inVM with target nodes insideVM.

A new merged list of scores,LM, is created by merging
the two original lists, taking the average of the scores for the
pages that belong to both of them.

After this merging step, the peer performs the PR algo-
rithm on the extended graphGM +WM, using the scores from
LM as initial scores. The score of the world node is initially
set to

LM(W) = 1− ∑
i∈VM

LM(i) (1)

and the PR scores obtained,PR, are used to update the
current JXP score listLM in the following manner:

L′M(i) =

{

PR(i) if i ∈VM
LM(i)×PR(W)

LM(W) otherwise (2)

The next step is to update local score listLA and local
world nodeWA. L′A is derived fromL′M by keeping the scores
of all pages that either belong toVA or point to one of the
pages inVA. W′A is obtained by taking all the links fromWM
that point to a page inVA and adding the links fromEB that
also point to a page inVA. This is done analogously at peer
B.

The merged graphGM, merged nodeWM and merged
score listLM are then discarded, as well asGB, WB andLB,
so that the storage requirements are kept low. Algorithm 2
shows the pseudo code of the JXP algorithm. Figure 1 illus-
trates the procedures to combine and disconnect local graphs
and world nodes.

Algorithm 2 The JXP Algorithm
1: input: local graphGA, world nodeWA, score listLA
2: repeat
3: Contact a random peerB in the network and exchange information
4: GM ←mergeGraphs(GA,GB)
5: WM ←mergeWorldNodes(WA,WB)
6: G′M ← (GM +WM)
7: LM ← combineLists(LA,LB)
8: PR← PageRank(G′M )
9: L′M ← updateScoresList(LM ,PR)

10: update(LA)
11: update(WA)
12: Discard(GM ,WM ,LM ,GB,WB,LB)

4 Extensions and Optimizations

The JXP algorithm, as presented before, already has nice
scalability, since the computations are strictly local andin-
dependent of the number of peers in the network, and stor-
age requirements per peer are linear in the number of locally
hosted pages. Moreover, we show, both mathematically and
experimentally, that the authority scores given by the algo-
rithm converge to the true global PR scores, as the meetings
between peers are performed in the network. Nonetheless,
the performance of JXP can be further enhanced, as this Sec-
tion will show. The extensions concern the meeting step, be-
fore the PR computation, where the authority scores from
both peers are combined and their local graphs are merged,
and the peer selection strategy for choosing a peer for the
next meeting.

4.1 Light-weight Merging of Local Graphs

At a peer meeting, instead of merging the graphs and world
nodes, we could simply add relevant information received
from the other peer into the local world node, and perform
the PR computation on the extended local graph and still
the JXP scores converge to the global PR scores. The meet-
ing step is then simplified and much more light-weight, as
shown by an example in Figure 2.
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Fig. 1 Illustration of the combining and disconnecting procedures.
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Fig. 2 Illustration of the light-weight merging step.

This has a big impact on the performance, as the graph
merging requires considerable computational time; more-
over, without the full merging steps, PR is computed for
smaller local transition matrices (roughly half the size ofthe
matrices in the full merging). One could argue that the light-
weight merging has the drawback of slowing down the con-

vergence speed of the algorithm, since a reduced transition
matrix implies a larger number of states that are aggregated
on the world node, which could lead to a higher approxima-
tion error. This is in fact a valid point, but our experiments
never showed any real slow-down of the convergence or big-
ger errors in comparing JXP scores against true PR scores
for the high-ranked pages. Another potential caveat about
the light-weight merging could be that the number of itera-
tions for a local PR computation might increase, but again,
this never became a real issue in all our experiments.

4.2 Combining Authority Scores

With the new light-weight meeting step proposed, PR is per-
formed at the extended local graph, where the only changes
are due to insertion of links from the world node to local
pages, whereas links from local pages to the world node are
invariant during all iterations of the JXP algorithm. Consid-
ering the authority mass transfer, it is intuitive that, from
iteration to iteration, more and more authority mass is given
to local pages as the peer learns about more incoming links;
so the score of the world node should always reduce until
the point it is equal to the sum of the true PR scores of the
external pages (we will address this property on Section 5,
where we proof that this is indeed the case). This is another
argument for the convergence of the JXP algorithm.

Based on this consideration, we propose a new way of
combining score lists of two peers. Instead of taking the av-
erage of the scores of those pages that belong to both lists,
we always take the bigger one of the two scores. This is jus-
tified by the fact that the world node’s score is monotonically
non-increasing in the sequence of peer meetings. So we can
use a tighter upper bound for the world node’s final score to
speed up convergence, since a bigger score is an indicator
that the peer knows about more incoming links. In addition,
when updating the score listsLA, the scores of pages that do
not belong to the local graphGA should not be re-weighted,
as this would result in smaller values, given that the ratio
PR(W)/LA(W) is expected to be always less than one. Thus,
the updating procedure is replaced by

L′A(i) =

{

PR(i) if i ∈VA
LA(i) otherwise (3)

4.3 Peer Selection Strategy

Peers differ in the sets of pages they have indexed, and con-
sequently different peers contribute to a given peer’s global
view and convergence of scores to different extents. The ba-
sic peer selection strategy, where peers are chosen at ran-
dom, is clearly not the best approach for meeting other peers.
Performance could be enhanced if each peer could iden-
tify the most promising peers to meet, namely, the ones that
would lead to faster convergence of the scores of its locally
indexed pages.
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A good indicator of the “quality” of a peer, i.e., how
much it would contribute to improve another peer’s scores,
is the amount of outgoing links that are also incoming links
for pages in this other peer; the higher the number of links
added to the world node, the higher is the amount of au-
thority mass transferred to local pages. The problem now is
how to identify these “good” peers, without prohibitively in-
creasing network bandwidth consumption. Our solution is a
combination of caching and statistical synopses of the peers’
local information.

Peer Synopses

Statistical synopses of peers are a light-weight approxima-
tion technique for comparing data of different peers with-
out explicitly transferring their contents. Synopses provide
very compact representations for sets, containing some local
information that can be used to estimate the correlation be-
tween two sets. In comparing sets, we are interested in the
measures of “overlap” and “containment”. Given two sets,
SA and SB, the overlap between these two sets is defined
as|SA∩SB|, i.e., the cardinality of the intersection. The no-
tion of containment was proposed in [15] and is defined as
Containment(SA,SB) = |SA∩SB|/|SB|. So containment rep-
resents the fraction of elements inSB that are also inSA.

Fundamentals for statistical synopses of sets have a rich
literature, including work on Bloom filters [12,28], hash sketches
[29], and min-wise independent permutations [16]. In this
paper we focus on min-wise independent permutations (MIPs).

The MIPs technique assumes that the set elements can
be ordered (which is trivial for integer keys, e.g., hash keys
of URLs) and computesN random permutations of the ele-
ments. Each permutation uses a linear hash function of the
form hi(x) := ai ∗x+bi mod UwhereU is a big prime num-
ber andai , bi are fixed random numbers. For each of theN
permutations, the MIPs technique determines the minimum
hash value, and stores it in anN-dimensional vector, thus
capturing the minimum set element under each of these ran-
dom permutations. By using sufficiently many different per-
mutations, we can approximate the set cardinality and can
estimate the containment of two sets.

Pre-meetings Strategy

For the new meeting strategy, we propose that peers perform
“pre-meetings”, for finding the most promising peers for the
next meeting. To this end, we first require all peers to com-
pute two min-wise permutations vectors: one representing
its set of local pages, and the other representing the set con-
taining all the successors from all local pages. We call these
two MIPs vectorslocal(A) andsuccessors(A), for a given
PeerA.

Assuming that PeerA has chosen PeerB for the next
meeting, the pre-meetings strategy works in the following
way. During the meeting step, PeerA computes
Containment(successors(B), local(A)), i.e., that the fraction
of local pages in PeerA that has inlinks from local pages

in PeerB. If the value is above some pre-defined threshold,
PeerA caches PeerB’s ID. This way, each peer remembers
peers that were previously met and have a relatively high
number of inlinks to their local pages. Note that this does not
really affect storage requirements, since the threshold limits
the number of peers and only the ID of peers are stored.

Still during the meeting step, we also measure the over-
lap between the local page sets ofA andB with the purpose
of finding promising peers for a meeting. The idea here is
that, given three peers, PeerA, B andC, if PeerC has many
links to PeerA, and the overlap betweenA andB is relatively
high, it is very likely thatC will have many links pointing to
B as well.

Whenever there is a relatively high overlap between two
peers, they both exchange their list of cached peers’ IDs.
The IDs are temporarily stored as potential candidates for a
next meeting. For getting the correct correlation with these
candidates, pre-meetings are performed with each peer in the
temporary list, where instead of exchanging their content,
peers return only their MIPs vector representation of their
successors sets,successors(C).

The pre-meetings phase does not increase the network
load, since only MIPs vectors are sent, and since these vec-
tors are small we can piggyback them on communication
messages that are exchanged in the P2P network anyway.

The valueContainment(successors(C), local(A)) is used
to sort peers in the temporary list. Then we select the peer
with the highest score on the temporary list for the next,
real, meeting (i.e., no longer a pre-meeting), and this step
chooses a good candidate with high probability based on
our heuristics. After a peer is chosen and the meeting took
place, the peer is dropped from this temporary list. It is im-
portant that peers have an updated view of the network, as
peers can change their contents or eventually leave the net-
work. Therefore, peers have to visit again the already cached
peers, with a smaller probability. In addition, the probability
of picking a peer at random should never go down to zero,
as some peers may not be reachable by merely following the
chain of cached peers.

Pseudo code for the optimized version of the JXP algo-
rithm is shown in Algorithm 3. The initialization procedure
is the same as the one described previously in Algorithm 1.

Algorithm 3 Optimized JXP Algorithm
1: input: local graphGA, world nodeWA, score listLA
2: repeat
3: B← selectPeer()
4: WA← addLinks(GB,WB)
5: G′A← (GA +WA)
6: LA← combineLists(LA,LB)
7: PR← PageRank(G′A)
8: update(LA)
9: Discard(GB,WB,LB)
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5 Analysis of JXP

In this Section we provide important properties of the JXP
scores, as well as a proof for the correctness of the JXP
method. We show that JXP scores converge to the correct
values, the global PR scores of the individual pages, or equiv-
alently, the stationary visiting probabilities of the underlying
global Markov chain. We consider only the optimized JXP
version with the light-weight merging from Section 4.1.

Our analysis builds on the theory of state aggregation in
Markov chains [23,61,49,38]. However, applying this the-
ory to our setting is not straightforward at all, and we use
it only for particular aspects. State-aggregation techniques
assume complete knowledge of the Markov chain and are
typically used to speed up the convergence of computations
(see, e.g., [43,21]). In contrast, our P2P setting poses the
difficulty that each peer has only limited knowledge of the
Web graph and the resulting Markov Model. Moreover, this
restricted view differs from peer to peer.

For the proof we assume that there are no changes in the
network, so there exists a global web graph withN pages, a
global transition matrixCN×N and a global stationary distri-
bution vectorπ . The elementci j of C is equal to 1/out(i) if
there is a link from pagei to pagej , and 0 otherwise. After
adding the random jumps probabilities we have a transition
matrixC′

C′ = ε C+(1− ε)
1
N

1N×N (4)

Every peer has a local graphG, subgraph of the global
web graph, that corresponds to the set of pages it has crawled.
Pages that are not inG are considered to be on the setG. The
local graph is extended by adding the world node. In our no-
tation a link from pagei to page j is represented byi → j ,
andW is the set of external pages that are represented in
the world nodew. For every pager in W we store the in-
formation about its outdegree,out(r) and current JXP score
α(r), both learned from a previous meeting. The number of
local pages is given byn. Associated with each extended lo-
cal graph we have a local transition matrixP that has the
following format

P(n+1)×(n+1) =









p11 . . . p1n p1w
... . . .

...
...

pn1 . . . pnn pnw
pw1 . . . pwn pww









(5)

where

pi j =

{ 1
out(i) if ∃ i→ j
0 otherwise

(6)

piw = ∑
i→r
r /∈G

1
out(i)

(7)

for everyi, j , 1≤ i, j ≤ n.
The transition probabilities from the world node,pwi and

pww, change during the computation, so they are defining
according to the current meetingt

pt
wi = ∑

r→i
r∈Wt

α(r)t

out(r)
· 1

αt−1
w

(8)

pt
ww = 1−

n

∑
i=1

pt
wi (9)

For the JXP computation, random jumps are also added,
with the particularity that the random jumps to the world
node are made proportional to the number of pages it repre-
sents. This gives us the following transition matrix

P′ = ε P+(1− ε)
1
N

1(n+1)×1
(

1 . . . 1 (N−n)
)

(10)

which has a stationary distribution vectorα

α =
(

α1 . . . αn αw
)T

(11)

that corresponds to the JXP scores, informally introduced
in Section 3 as score lists.

5.1 Initialization Procedure

We start with a local transition matrix,P0, with all pwi ele-
ments equal to zero since the peers start with no knowledge
about external pages. The elementpww is consequently set
to 1.

P0
w∗ =

(

0 . . . 0 1
)

(12)

The local JXP scores vector is initially set to:

α init =
(

1
N . . . 1

N
N−n

N

)T
(13)

The PR computation is then performed using the transi-
tion matrixP′0 and an updated value for the local authority
scores vectorα0 (t = 0) is obtained.
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5.2 The Meeting Step

As described earlier, the meeting process consists of adding
new links, or updating existing links from the world node to
the local pages, and performing the PR algorithm using the
updated transition matrix.

Consider the follow local transition matrix and its local
JXP scores vector at meeting(t−1) (t ≥ 1)

Pt−1
(n+1)×(n+1) =











p11 . . . p1n p1w
... . . .

...
...

pn1 . . . pnn pnw

pt−1
w1 . . . pt−1

wn pt−1
ww











(14)

αt−1 =
(

αt−1
1 . . . αt−1

n αt−1
w

)T
(15)

For the sake of simplicity, we split the merging step, by
considering only one link addition/update at a time. Assum-
ing that during meetingt a link to pagei has been added or
updated, we can expresspwi at timet as

pt
wi = pt−1

wi +δ (16)

Since the authority scores of external pages on the meet-
ing step can only increase or remain unchanged we can as-
sure that the value ofδ is always non-negative.

As the transition probability from the world node to itself
is always adjusted to compensate for changes of the other
transition probabilities we can also write

pt
ww = pt−1

ww −δ (17)

The transition matrix at meetingt can then be written as

Pt = Pt−1 +E (18)

where

E =









0 . . . 0 0
... . . .

...
...

0 . . . 0 0
0 . . . 0 δ 0 . . . 0 −δ









(19)

which leads to an updated JXP scores vector

αt =
(

αt
1 . . . αt

n αt
w

)T (20)

The following two theorems describes important proper-
ties about the JXP scores.

Theorem 1 The JXP score of the world node, at every peer
in the network, is monotonically non-increasing.

Proof The proof is based on the study of the sensitivity of
Markov Chains made by Cho and Meyer [22]. From there
we can state that by increasingpwi by δ and decreasingpww
by the same amount, the following holds

αt−1
w −αt

w

αt−1
w

= αt
w δ miw (21)

wheremiw is the mean first passage time from pagei to
the world node (i.e., the expected number of steps for reach-
ing w when starting ini, in the underlying Markov chain).
Rearranging the terms on the equation we have

αt
w−αt−1

w =−αt−1
w αt

w δ miw (22)

Since all the values on the right side of the equation are
non-negative we can assure that

αt
w−αt−1

w ≤ 0 (23)

Theorem 2 The sum of scores over all pages in a local graph,
at every peer in the network, is monotonically non-decreasing.

Proof The proof follows from Theorem 1 and the fact that
the following equality holds

∑
i∈G

αi +αw = 1 (24)

We now proceed by showing how the JXP scores and the
global PR scores are related. The next Theorem shows that
the global PR values are an upper bound for the JXP scores.

Theorem 3 Consider the true stationary probabilities (PR
scores) of pages i∈G and the world node w,πi andπw, and
their JXP scores after t meetingsαt

i and αt
w. The following

holds throughout all JXP meetings:
0 < αt

i ≤ πi for i ∈G andπw≤ αt
w < 1.

Proof We know that for every pagei ∈G:

πi =
1− ε

N
+ ε ∑

j→i
j∈G

π j

out( j)
+ ε ∑

j→i
j∈G

π j

out( j)
(25)

and

αt
i =

1− ε
N

+ ε ∑
j→i
j∈G

αt
j

out( j)
+ ε ∑

j→i
j∈Wt

αt
j

out( j)
αt

w

αt−1
w

(26)

We prove the claim about theαt
i values by induction on

t; the proof for the claim on the world node follows directly
from the fact that the score vector is normalized. The claims
thatαi > 0 andαt

w < 1 are trivial to show.
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For t = 0 we consider the situation that a given peer with
graphG knows only its local graph and has no information
about the world node other than the total number of nodes,
N (as explained in Section 5.1). Thus the peer assumes that
the only transfer of score mass fromw to any node inG
is by random jumps, which is the minimum transfer that is
possible. SinceG includes outgoing links tow, a local PR
computation based on this setting cannot overestimate and
will typically underestimate the scores of nodes inG.

Now assume that the claim holds for all meetings up to
and includingt, and consider thet +1st meeting.

First we observe that because ofαt
w ≤ αt−1

w (by Theo-
rem 1),Wt ⊆G, and the induction assumptionαt

j ≤ π j , the
following upper bound holds for the third summand (abbre-
viated asβi):

ε ∑
j→i

j∈Wt

αt
j

out( j)
αt

w

αt−1
w
≤ ε ∑

j→i
j∈G

π j

out( j)
:= βi (27)

Now consider the following upper bound forαt+1
i :

αt+1
i ≤ 1− ε

N
+ ε ∑

j→i
j∈G

αt+1
j

out( j)
+βi (28)

In thet +1st meeting nodei could increase itsαi value in
three ways: a) by learning about an additional nodex∈Wt+1

with x /∈Wt that points toi, b) by learning that a previ-
ously known nodex∈Wt that points toi has a higher value
αt+1(x) than the last time that a peer withx in its local graph
was met (i.e., at some previous iterationt ′ < t +1), or c) the
value αt+1

j of some incoming neighborj from the peer’s
own local graphG ( j ∈G) has a higher value than in previ-
ous iterations. No other cases are possible.

The last case is impossible unless one of the cases a)
or b) occurs, simply because all outdegrees are fixed and,
without any external changes, the local PR computation on
G will reproduce the scores computed in earlier iterations.
But by the induction assumption we haveαt

i ≤ πi for all
previoust. In the first and second case we can conservatively
assume the upper boundβi for whatever increased score the
nodes inWt+1 may transfer toi or any other nodes inG.
Thus we have

αt+1
i ≤ 1− ε

N
+ ε ∑

j→i
j∈G

αt+1
j

out( j)
+βi

≤ 1− ε
N

+ ε ∑
j→i
j∈G

π j

out( j)
+βi = πi

(29)

Theorem 3 does not explicitly reflect the fact that nodes
from two local graphs can overlap. We assumed that in these

cases the nodes are treated as local nodes, and we take their
α j values from the peer’s local bookkeeping. However, be-
cause all peers, by Theorem 3, invariantly underestimate the
true stationary probability of these nodes, we can safely use
the maximum of theα j values from the two peers in a meet-
ing: the maximum is still guaranteed to be upper-bounded
by the true PR scoreπ j .

Theorem 3 is a safety property in that it shows that we
never overestimate the correct global PR scores. What re-
mains to be done is to show liveness in the sense that JXP
makes effective progress towards the true PR scores. The ar-
gument for this part is based on the notion of fairness from
concurrent programming theory (see, e.g., [42]): a sequence
of events is fair with respect to evente if every infinite se-
quence has an infinite number ofe occurrences. In our set-
ting, this requires that in an infinite number of P2P meetings,
every pair of peers meet infinitely often. Truly randomized
meetings with uniform distribution have this property, but
there are other ways as well. A similar argument has been
used in [3] for online page importance.

Theorem 4 In a fair series of JXP meetings, the JXP scores
of all nodes converge to the true global PR scores.

Proof The fairness property ensures that at some point, say
after thetth meeting, every peer knows all its incoming neigh-
bors, the complete sets{ j | j→ i, j ∈G} for all i ∈G. At this
point, the only reason why a peer’s local JXP scoreαt

i for
some pagei may still underestimate the global PR scoreπi
is that the JXP scores of the incoming neighbors from out-
side ofG may also be underestimated, i.e.,αt

j < π j for some
j ∈W. We show that this situation cannot hold indefinitely,
once all the incoming links from external pages are com-
pletely known.

There are two cases to consider. The first case is when
the world node’s JXP scoreα t̂

w has converged at some point
t̂ ≥ t so thatα t̂

w = πw holds (strictly speaking, the difference
between theα and theπ value is below someε that can be
made arbitrarily small; we simplify the argument for simpler
notation). At this point, we can infer that∑i∈G α t̂

i = ∑i∈G πi .
So if someα t̂

i is still strictly below its PR scoreπi , some
other pagej ∈ G must have anα t̂

j value strictly higher than
its PR scoreπ j . But this is impossible because of Theorem
3.

The second case is thatα t̂
w < πw holds and stays invariant

in all subsequent meetings. But then we haveα t̂+1
w = α t̂

w
which implies:

α t̂+1
i =

1− ε
N

+ ε ∑
j→i
j∈G

α t̂+1
j

out( j)
+ ε ∑

j→i
j∈G

α t̂+1
j

out( j)

=
1− ε

N
+ ε ∑

j| j→i

α t̂+1
j

out( j)

(30)

This is the very same fixpoint equation that we have for
the true PR scores, theπi values. We know that this fixpoint
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equation has a unique solution [14,38,61]; thus the above
equation must have the same solution as the equation for the
πi values, and so the JXP scores eventually equal the PR
score. (Again, strictly speaking, the difference drops below
someε that can be chosen arbitrarily small.)

5.3 Additional Considerations

Our convergence proof applies to the optimized, light-weight
merging of peer graphs with the local graph extended only
by the single world node, and with truly random peer meet-
ings. Also, we assumed that when two peers meet with over-
lapping graphs, each peer uses its locally stored approximate
PR as the estimate for theαi values. If instead we use the
maximum of the two values for pages known at both peers
(as advocated in Section 4.2), the convergence proof still
holds by the argument given in Theorem 3.

As for light-weight merging vs. forming the full union of
the graph fragments of two meeting peers, the proof does not
carry over to the full-union method. But we do not see any
compelling reason for not using the light-weight approach.
We will show in Section 7.2 on experiments that the accu-
racy and convergence speed of the light-weight merging are
more or less as good as for the full-union method. Thus, we
have a convergence proof for the interesting and really rele-
vant method, the light-weight merging.

Peer meeting strategies other than truly random (with
uniform choices) could also potentially invalidate the as-
sumptions of the correctness proof. However, all we need
to ensure for the proof to hold is that the meeting strategy
is fair (in the sense described in Theorem 4). This is easy
to achieve even with the biased peer selection strategies pre-
sented in Section 4.3, simply by making everykth peer se-
lection step truly random. Fairness holds for any constantk,
so we can choose a high value fork and primarily pursue the
biased meeting strategy.

Finally, we disregarded the dynamics of the P2P net-
work in the sense that we assumed the global graph to be
time-invariant. This is unrealistic for various reasons: 1) new
Web pages are created, old pages disappear, and links are
created or deleted all the time, 2) therefore, peers want to
periodically re-crawl parts of the Web according to their in-
terest profiles and refreshing policies, and 3) peers join and
leave the P2P network at high rate (the so-called “churn”
phenomenon that is typical for P2P networks). Under these
conditions, there is no proof of JXP score convergence, and
with the current state of the art in P2P computing, there are
hardly any guarantees that can be proven under extremely
high churn. But this applies also to other, conceptually sim-
pler, properties of P2P systems in general, such as DHT per-
formance guarantees or full correctness under particularly
“nasty” failure scenarios [47]. On the positive side, JXP has
been designed to handle high dynamics, and the algorithms
themselves can easily cope with changes in the Web graph,
repeated crawls, or peer churn. Extending the mathematical
analysis to include these additional difficulties is a challenge
for future work.

5.4 Misestimation of the Global Number of Pages

The JXP algorithm assumes knowledge of the total number
of distinct pages in the P2P network in order to compute the
random jumps probabilities and correctly converge to the
global PageRank values. Although there are efficient tech-
niques for distributed counting with duplicate elimination
[34,39,9], the need for knowing this global quantity could
be a problem.

Our studies have found that the true value of the number
of pages in the network is only needed when we are inter-
ested in the correct stationary distribution values for each
page. For cases where the correct values is not a must, as
long as theranking is correct, which is often the case, any
choice for the random jump probability is sufficient, as long
as the value for the global number of pages is the same
across all peers and greater than the largest local collection.

To formalize this result about different values for com-
puting the random jumps probabilities we redefine the tran-
sition matrix from Equation 10 as follows

P′(X) = ε P+(1− ε)
1
X

1(n+1)×1
(

1 . . . 1 (X−n)
)

(31)

whereX is the value used to replace the global number of
pagesN. WhenN is known, we haveX = N and the results
are the same as given on the previous subsections.

The convergence of the JXP algorithm for different choices
of X is guaranteed by the following theorem.

Theorem 5 The JXP local transition matrices, at every peer,
are always stochastic, for any choice of X> n.

Proof By inspection of the matrixP′(X) we can see that it
satisfies all three conditions for being stochastic [61]

1. p′i j ≥ 0 for all i, j
2. ∑ j p′i j = 1 for all i
3. At least one element in each column differs from zero.

The first and third conditions require thatX > n.

Theorem 5 guarantees that there exists a stationary dis-
tribution vectorα(X)

α(X) =
(

α1(X) . . . αn(X) αw(X)
)T (32)

associated with each local matrix, which corresponds to
the JXP scores.

Although this result does not mathematically relate the
αi(X) values with theπi values, our experiments (see Sec-
tion 7) indicate thatαi(X) values, withX 6= N are related to
αi(N) by a scaling factor, which results in the ranking orders
to remain unchanged.
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6 Identifying Malicious Behavior

The decentralized nature of the JXP computation relies on
the information given by each peer in order to compute the
global authority scores. However, it is known that in such de-
centralized environment peers might cheat in an attempt to
distort the scores by providing manipulated data in the peer
meetings. In this section we propose an enhanced version
the JXP, that contains a variety of statistical techniques for
detecting suspicious behavior. The enhanced version, coined
TrustJXP, is again completely decentralized, and we demon-
strate its viability and robustness in experimental results (see
Section 7). TrustJXP does not require any form of coop-
eration among peers. Peers may be arbitrarily egoistic or
malicious, but we assume that the fraction of well behav-
ing peers is significantly larger than the fraction of cheating
peers. TrustJXP can also operate with anonymous peers.

There are many possible forms of attacks or manipula-
tions in a P2P network.

In this paper we focus on attacks where peers want to
distort the authority scores being computed by JXP, by re-
porting, whenever asked by another peer, wrong scores for
a set of pages. We have modeled two types of such score
manipulation:

1. A cheating peer can report a higher score for some or
all of its local pages, in an attempt to get its pages into
high positions in the global ranking that JXP peers may
perceive. In this form of manipulation, the peer would
boost pages at the “expense” of reducing the total weight
of its world node (giving lower score mass to all non-
local pages).

2. A cheating peer can manipulate the scores of its local
pages by permuting the scores. This way, some pages are
boosted while others are downgraded. The score mass
of the world node would stay unchanged. Moreover, the
statistical distribution of the scores among local pages
would appear identical to the original distribution. So
this attack is harder to detect.

In the following subsections we describe how we detect
and eliminate or compensate the effects of such attacks.

6.1 Malicious Increase of Scores

As we mention earlier, having documents with high author-
ity scores can bring many benefits for the peer: with its pages
appearing at the first positions in the ranking for answering
queries posted on the network, the probability that a user
clicks on one of them is higher, which may translate, for in-
stance, in revenue for that peer.

To combat this kind of manipulation we use the scores
distributions of the pages in a peer’s local graph. After a few
iterations, the local distributions should resemble the global
distribution. The justification for this hypothesis stems from
the way the local graph fragments are built. In our P2P model,
each peer gathers its data by performing Web crawls, starting

from particular seeds and possibly using a thematically fo-
cused crawler in order to harvest pages that fit with the inter-
est profile of the corresponding user (or user group). Given
that the Web graph is self-similar [25,5], the properties of
the small graph fragment that a peer eventually compiles
should be statistically indistinguishable from the properties
of the full Web graph as seen by a centralized crawler. [25]
observed these properties also across different partitions of
the Web graph, including the case where pages were sepa-
rated by their content, which corresponds to using a focused
crawler. We use histograms for storing and comparing the
different scores distributions.

Histograms

Histograms provide a compact representation of the scores
distributions. Pages are assigned to histogram buckets ac-
cording to their JXP scores. Since scores are expected to fol-
low a power-law distribution, we make the boundaries of the
buckets also exponential, similar to what is used in [7]. More
precisely, the bucket numberi will have the boundaries

bucket(i) = [a·bi−1,a·bi)

where the values fora andb are 0.005 and 0.3, respec-
tively. We chose these values in order to cover the range of
expected values for the scores. The precise values fora and
b will depend on the distribution of PageRank values in the
observed sample, which in turn depends on the number of
pages in the entire network and the dampening factor.

We create, at each peer, a histogram which is initially
filled with the initial JXP scores of local pages. After each
meeting, the distribution of the local scores of the other peer
is added to the local histogram. We introduce anovelty factor
to account for the dynamics of the scores across the meet-
ings. Given the local histogram at meetingt, Ht , and the
score distribution from the other peerD, the local histogram
at meeting(t +1) is updated as follows:

H(t+1) = (1−ρ)Ht +ρD

where the parameterρ represents how much importance
we give to the new values. In our framework we setρ = 0.6.

Since we rely on the assumption that the number of hon-
est peers is significantly bigger than the number of dishonest
ones, we expect that the histogram always reflects the true
distribution of the honest peers. If dishonest peers are re-
porting higher scores for some of their local pages, the dis-
tribution of their local scores would no longer resemble the
distribution expected over all peers. Therefore, a compari-
son against the accumulated local histogram should give an
indication of this deviation from normal behavior. How we
compare the distributions is explained in the next subsection.

Comparing Histograms

Given the accumulated local histogram of a peeri, Hi , and
the histogram containing the scores distribution of another
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peer j , D j , we want to compute how muchD j deviates from
Hi . Since the distributions are expected to be similar [25],
we believe that the distributions of honest peers should be
very close to each other, and ifD j differs fromHi by a large
margin, it is an indication that the peer is cheating about its
local scores. For comparing the two distributions we have
chosen theHellinger Distance, which is defined as [46]:

HDi, j =
1√
2
[∑

k

(
√

Hi(k)−
√

D j (k))
2]

1
2 (33)

where,k is the total number of buckets andHi(k) and
D j (k) are the number of elements at bucketk at the two dis-
tributions, both normalized by the total number of elements
at each distribution. The factor 1/

√
2 is introduced to nor-

malize to range of possible values.
As an alternative to the Hellinger Distance, we could also

use theχ2 goodness-of-fit test or information-theoretic mea-
sures such as Kullback-Leibler divergence. We implemented
all variants, and found that the Hellinger Distance gave the
most robust results, but the other methods worked fine, too.
Since it is a metric, Hellinger Distance has nice properties,
besides the fact that values can be normalized, which makes
it easier to be combined with other measures.

6.2 Malicious Permutation of Scores

Our histograms comparison is inherently unable to detect a
cheating peer that reports a permutation of the current scores
of its local pages, since both distributions would be statisti-
cally indistinguishable. For detecting this type of attackwe
use a different technique. In our experimental studies of the
JXP algorithm, we have observed that, after a few meetings,
although the local JXP scores do not correspond yet to the
global authority scores, peers already start having a good
notion of the relative ranking of their local pages. Given this
fact, a comparison of the relative ranking of pages in both
local graphs should give us hints about cheating attempts.

We compare the two rankings of the two peers in a meet-
ing for those pages fall into the overlap of both local graphs,
and we measure what we refer to as theTolerant Kendall’s
Tau Distance, defined below.

We use a relaxation of Kendall’s Tau since we need to
tolerate small fluctuations in the scores of pages with almost
identical global authority. To this end, we discount page pairs
that have different relative orders in the two rankings if their
score differences are below a tunable threshold∆ . In this
case, we consider the page pair as incomparable and their
rank order as arbitrary.

Our Tolerant Kendall’s Tau Distance is therefore defined
as:

K′i, j =|(a,b) : a < b∧scorei(a)−scorei(b)≥ ∆
∧ τi(a) < τi(b)∧ τ j(a) > τ j(b)|

(34)

wherescorei(a) and scorei(b) are the scores of pages
a andb at peeri, a < b refers to the lexicographical order
of page URLs (to avoid double-counting),τi andτ j are the
rankings of pages in the overlapping set at peersi and j ,
and∆ is our tolerance threshold. A good choice of∆ can be
derived from the dampening factor of the underlying PageR-
ank model as follows. We consider as our threshold the min-
imum amount of authority mass one page can have, which is
the score mass earned from the random jumps. Therefore, at
each peer,∆ is set to

∆ =
(1− ε)

N
(35)

whereε is usually set to 0.85 andN is the total number
of pages in the network.

This approach assumes that whenever two peers meet,
there is a sufficient overlap between their locally known pages
to make this comparison statistically meaningful. In an ap-
plication where such overlaps cannot be guaranteed with
high probability, we would have to add artificial overlaps
as “honesty witnesses”. One way of designing such an addi-
tional set of witness pages would be to randomly draw a set
of sample URLs and disseminate them in the network by an
epidemic protocol or using the overlay network of the P2P
system. This set of witnesses should be changed periodically
to counter adaptation strategies of malicious peers.

6.3 Computing Trust Scores

We now use our trust model to assign trust scores to peers.
The method is totally decentralized: each peer is responsible
for assigning (its perception of) trust scores to other peers,
based on interactions with them. During a meeting, peers
exchange the scores of their local pages. These scores are
used for computing both histograms divergence and the rank
divergence for the overlapping pages. These two measures
will determine the level of trust that should be given to the
peer. A new trust score is assigned to a peer at every meeting,
as scores are changing.

It is important to emphasize that our technique relies on
comparing only the scores of the local pages without any
further information about peer identity. This characteristic
makes the algorithm resilient to simple Sybil attacks where
a single “bad peer” is banned from the network but then re-
joins it under a new identity. TrustJXP never considers the
identities of peers, and thus has certain immunity against this
simple form of Sybil attacks.

For combining histograms divergence and rank diver-
gence into one single trust score, we take a conservative
choice: we always take the lower level of trust among the
two measures. Thus, we define the trust score that a peeri
gives to a peerj as

θi, j = min(1−HDi, j ,1−K′i, j ) (36)
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This is the trust score that will be used in the TrustJXP
algorithm, which is presented in the following section.

6.4 Integrating Trust Scores and JXP Scores

TrustJXP incorporates the trust measureθ into the JXP al-
gorithm for computing more reliable and robust authority
scores. Our approach is to use the trust measure at peer meet-
ings when combining the scores lists. For combining the
scores lists, in the JXP algorithm, whenever a page is present
in both lists, its score will be set to the average of both scores
or the maximum of the two scores, depending on the ap-
proach chosen. More formally, the score of pagei in the up-
dated score listL′ is given by

L′(i) =

{

(LA(i)+LB(i))/2 if “average”
max(LA(i),LB(i)) if “maximum” (37)

whereLA(i) andLB(i) are the scores of pagei at the two
peers. If the page is not in one of the lists, its value is set to
zero on the respective list.

For the TrustJXP algorithm, the contribution of the scores
from the other peer are weighted based on how much that
peer is considered to be trustworthy. The score of a pagei in
the updated scores list is now defined as

L′(i) =

{

(1−θ/2)∗LA(i)+θ/2∗LB(i) if “average”
max(LA(i),θ ∗LB(i)) if “maximum”

(38)

After combining the scores lists, the JXP algorithm pro-
ceeds as usual: the relevant information learned from the
other peer is added to the world node, and a PR computa-
tion is performed, leading to new JXP scores.

7 Experimental Evaluation

7.1 Setup

We evaluated the performance of the JXP algorithm on a
collection of pages from the Amazon.com website and on a
partial crawl of the Web graph. The Amazon data contains
information about products (mostly books) offered by Ama-
zon.com. The data was obtained in February 2005, and the
graphs were created by considering the products as nodes
in the graph. For each product, pointers to similar recom-
mended products are available in the collection. These point-
ers define the edges in our graphs. Products are also clas-
sified into one or more categories. We have thematically
grouped together some of the original categories, so in the
end we had a total of 10 categories (e.g., “computers”, “sci-
ence”, etc ).

The Web collection was obtained in January 2005, using
the Bingo! focused crawler [58]. We first trained the crawler

with a manually selected set of pages and after that, new
pages were fetched and automatically classified into one of
10 pre-defined categories such as “sports”, “music”, etc.

We checked the degree of connectivity to assure that the
PR computation was meaningful in these datasets. Figure 3
shows the indegree distribution, on a log-log scale for the
two collections. We can see that the two distributions are
close to a power-law distribution, which is also the standard
assumption for the complete Web graph. We thus expect that
our experiments, albeit rather small-scale, are fairly indica-
tive for the behavior at Internet scale.
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Fig. 3 Indegree Distributions.

Pages were assigned to peers by simulating a crawler in
each peer, starting with a set of random seeds pages from
one of the thematic categories and following the links and
fetching nodes in a breadth-first approach, up to a certain
predefined depth. The category of a peer is defined as the cat-
egory to which the initial seeds belong. During the crawling
process, when the peer encounters a page that does not be-
long to its category, it randomly decides to follow links from
this page or not with equal probabilities. For both datasets
we have 100 peers, with 10 peers per category. In the Ama-
zon setup there is a total of 55,196 pages and 237,160 links,
and in the Web crawl setup we have 103,591 pages and
1,633,276 links. We realize that these are fairly small-scale
experiments, but they are nevertheless reasonably indicative.
The reason for the limited data volume is that we had to run
all 100 peers on a single PC.

7.2 JXP Accuracy And Convergence

For evaluating the performance we compare the authority
scores given by the JXP algorithm against the true PR scores
of pages in the complete collection. Since, in the JXP ap-
proach, the pages are distributed among the peers and for
the true PR computation the complete graph is needed, in
order to compare the two approaches we construct a total
ranking from the distributed scores by essentially merging
the score lists from all peers. (Note that this is done for the
experimental evaluation, it would neither be needed nor de-
sired in the real P2P network). We do this periodically after
a fixed number of meetings in the network. Since overlaps
are allowed and no synchronization is required, it can be the
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case that a page has different scores at different peers. In this
case, the score of the page on the total ranking is considered
to be the average over its different scores.

The total top-k ranking given by the JXP algorithm and
the top-k ranking given by traditional, centralized PR are
compared using Spearman’s footrule distance [27], defined
as F(σ1,σ2) = ∑k

i=1 |σ1(i)− σ2(i)| whereσ1(i) and σ2(i)
are the positions of the pagei in the first and second rank-
ing. In case a page is present in one of the top-k rankings
and does not appear in the other, its position in the latter is
considered to bek+ 1. Spearman’s footrule distance is nor-
malized to obtain values between 0 and 1, with 0 meaning
that the rankings are identical, and 1 meaning that the rank-
ings have no pages in common. We additionally consider a
linear score errormeasure, which is defined as the average
of the absolute difference between the JXP score and the
global PR score over the top-k pages in the centralized PR
ranking.

First of all, we studied the general behavior of the JXP
method, to test whether it serves its purpose as a P2P ap-
proximation of global PR. Figures 4 and 5 show Spearman’s
footrule distance and the linear score error for the Amazon
collection and the Web crawl, respectively. Here the scores
of the top-1000 highest ranked pages were used, and the
charts show the error as a function of the number of peer
meetings. We see that the error drops quickly as the peers
meet other peers. Already at 1000 meetings the footrule dis-
tance drops below 0.3 for the Amazon data and below 0.2 for
the Web crawl. At this point, each of the 100 peers, on av-
erage, has met and exchanged its graph with 10 other peers.
Beyond this point, the JXP scores converge to the global PR
values. These observations demonstrate the general viability
of the JXP method.
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Fig. 4 Spearman’s footrule distance (a) and linear score error (b)for
the Amazon data.

We then evaluated the performance of the proposed light-
weight merging procedure against the full merging of the
baseline JXP method. The results are shown in Figures 6
and 7.

The charts show that the results are almost unaffected if
the graphs are not merged. The small error inserted in the
scores did not affect the ranking order of the pages. The per-
formance, however, is highly enhanced, as Table 1 shows.
We measured, for each peer, the CPU time (in milliseconds)
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Fig. 5 Spearman’s footrule distance (a) and linear score error (b)for
the Web crawl.
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Fig. 6 Comparison of merging procedures for the Amazon data.
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Fig. 7 Comparison of merging procedures for the Web crawl.

needed to perform a merging procedure (for one meeting
with one other peer). Table 1 presents the average over all
meetings a peer has made. Due to space constraints the re-
sults are shown only for the three biggest and the three small-
est peers (peers were sorted in decreasing order according
the their numbers of locally held pages). Similar improve-
ments were obtained for all the other peers as well. As ex-
pected, the time needed for the merging procedure drops sig-
nificantly when we use the light-weight merging.

Table 1 CPU time comparison (in milliseconds) between the full
merging and the light-weight merging procedures.

Amazon.com Subset of Web
Original Light-weight Original Light-weight
Merging Merging Merging Merging

Peer 1 2,480 853 31,444 24,943
Peer 2 2,337 813 26,024 19,364
Peer 3 2,230 648 17,718 13,687
Peer 98 756 87 1,864 229
Peer 99 725 76 1,776 162
Peer 100 683 56 1,403 98
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Using the light-weight merging procedure, we then com-
pared the performance of the two approaches for combining
the score lists. Figure 8 shows the linear score error, where
the solid line corresponds to the approach where we first
average the scores and then, after the PR computation, re-
weight the ones corresponding to pages that do not belong
to the local graph, and the dashed line is the result for when
we always take the bigger score, when combining the lists,
and leave the scores of external pages unchanged after the
PR computation was performed. Here again, we used the
scores of the top-1000 pages.
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Fig. 8 Comparison of the methods for combining the score lists.

The results show that authority scores converge faster to
the global PR values when we replace the method for com-
bining the score lists by the one proposed in Section 4.2.
They also suggest that the amount of improvement that can
be obtained is related to the collection itself. The most in-
teresting and most important improvement, however, is ob-
tained by the peer selection strategy, discussed next.

Figures 9 and 10 present the performance comparison
between the two peer selection strategies, with the pre-meetings
phase and without the pre-meetings phase, where peers are
chosen at random, for the Amazon data and the Web crawl,
respectively. For the Web crawl we considered the top-1000
pages, and for the Amazon data we compared the top-10000
pages.
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Fig. 9 Comparison of peer selection strategies for the Amazon data.

We can see that during the first meetings both approaches
perform similarly, but as peers discover, through the pre-
meetings, the most promising peers, the number of meetings
needed for a good approximation to the global PR scores
is reduced. For instance, in the Amazon data, to make the
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Fig. 10 Comparison of peer selection strategies for the Web crawl.

footrule distance drop below 0.2 we needed a total of 1,770
meetings without the pre-meetings phase. With the pre-meetings
phase this number was reduced to 1,250. In the Web crawl
setup, for a footrule distance of 0.1, the number of meetings
was reduced from 2,480 to 1,650. It is clear that the peer se-
lection strategy plays a big role not only on the convergence
speed of the JXP algorithm but also on the network load. By
finding the most promising peers, many meetings with peers
that would contribute only marginally useful information are
avoided.

Even though these optimizations significantly reduce the
network load, the JXP algorithm still requires a considerable
number of meetings. However, the size of the transmitted
messages is small, since, for the JXP computation, no page
content is required. We measured, for the same setups pre-
sented before, the message size of a peer at each meeting.
Figures 11 and 12 show the median, the first quartile and
the third quartile (in KBytes) for the values at all peers, after
each meeting they have performed. We also compare the two
peer selection strategies, with and without the pre-meetings
phase.
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Fig. 11 Message size (in KBytes) for the Amazon data setup.

The results show that JXP consumes rather little net-
work bandwidth, as the messages sizes are small. We can
also see that the pre-meetings phase causes only a small in-
crease of the number of transmitted bytes, since it requires
the exchange of the min-wise independent permutation vec-
tors only. Although the messages transmitted with the pre-
meetings phase are slightly bigger, the overall network band-
width consumption drops significantly, since fewer meetings
are performed. For the Amazon data, the total message cost
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Fig. 12 Message size (in KBytes) for the Web crawl setup.

to make the footrule distance drop below 0.2 was around
461MBytes with the pre-meetings phase, compared to the
569MBytes transmitted when meetings were performed at
random – a reduction of almost 20%. In the Web crawl, the
decrease in the amount of bytes transmitted, for a footrule
distance of 0.1, was about 30%, from 4.59 to 3.22 GBytes.
We emphasize that these values are the total number of bytes
over all meetings performed. Recall that the cost per meeting
is small and the time interval between two sucessive meet-
ings can be adapted to the available bandwidth.

7.3 Effects of Misestimating the Global Number of Pages

Here we again measured Spearman’s footrule distance and
the Linear Score Error at the top-1,000 for the JXP and PR
global rankings for the Web collection. Additional we have
computed the L1 norm for the JXP ranking vector and the
cosine between the full ranking vectors of JXP and PR. Since
the scores are normalized, the L1 norm for the global PR
vector is 1. Figure 13 shows the results for values ofX equals
to N, 10N, 5N and 0.5N.
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Fig. 13 Experimental results for differentX equals toN, 0.5N, 5N and
10N.

We can see that Spearman’s footrule distance and the co-
sine measure are not affected by the different choices ofX,
which is an indication that the JXP scores are affected only
by a rescaling factor, and that the ranking order is not altered.

7.4 TrustJXP Performance

In these experiments we created malicious peers by “cloning”
some of the already existing peers as follows. The number of
malicious peers was varied in the experiments (see below).
Each malicious peer copied the local graph from one of the
100 good peers. It cheats at all meetings by either reporting
a higher score for all or some of its local pages, or by per-
muting the scores among its pages. Malicious peers perform
meetings and local PageRank computations like any normal
peer. The difference is that, when asked by another peer for
its scores list, a malicious peers will lie about the scores of
its local pages. In the experiments, peers do not change their
behavior during the TrustJXP computation; for example, if
a peer chooses to permute its scores for the first meeting,
it will do so for all subsequent meetings and it will apply
always the same permutation.

Starting from the setup with 100 honest peers we first
introduced 10 cheating peers. Each of these 10 peers uses
one of the possible attacks by uniformly random choice (i.e.,
with each one of three types of misbehavior having proba-
bility 1/3 to be chosen by a dishonest peer):

– Some peers always report local JXP scores that are twice
as high as their true values for all of their local pages.

– Some peers always report these falsely boosted scores
for only half of their local pages (drawn randomly but
used consistently throughout all meetings).

– Some peers always permute their scores list.

We kept this setup of mixed behaviors, and increased the
number of dishonest peers from 10 to 50. The results of this
experiment, when using standard JXP without countermea-
sures to cheating, are shown in Figure 14. We clearly see
that, with the introduction of malicious peers and without
any trust mechanism, the JXP scores do no longer converge
to the true global PageRank values. The mathematical anal-
ysis of the JXP algorithm given in Section 5 proved that the
JXP scores are upper-bounded by the true PageRank scores.
With malicious peers reporting scores that are higher than
the true ones, there is no bound for the scores. This effect
can escalate: it distorts the world-node score and the tran-
sition probabilities from the world node to the local pages,
and can even lead to a negative transition probability for the
word node’s self loop. At this point, scores start becoming
undefined; this is the point where the linear-error, cosine,
and L1-norm curves stop.

We proceeded by testing our trust model, measuring both
histograms divergence and rank divergence for the overlap-
ping pages. We again introduced 50 cheating peers, but now
all peers performed the same type of attack. Figures 15 and
16 show the Hellinger Distance and the Tolerant Kendall’s
Tau for the case where cheating peers report scores five times
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Fig. 14 Impact of Malicious Peers with Original JXP.

higher than the true ones, and for the case where peers per-
mute their scores, respectively. In these graphics a green (or
light grey) “plus” symbol denotes that an honest peer met
another honest peer, and a red (or black) “square” symbol
means that an honest peer met a cheating peer. Meetings per-
formed among dishonest peers are not shown for the sake of
clarity. The results confirm our hypothesis that comparing
histograms can be an effective indicator of cheating behav-
ior with increased scores. We can also see that, when scores
are permuted, the histogram approach does no longer work,
and the rank divergence provides a better indication of such
malicious behavior.

Finally, we repeated this experiment with 50 malicious
peers, and used our TrustJXP method for computing local
scores. The histograms and rank divergence, as well as the
final TrustJXP scores are shown in Figure 17, and the per-
formance of the TrustJXP algorithm is illustrated in Figure
18.

For measuring how effective a trust model can be at all,
we simulated the “ideal” case, with an oracle-based defense
mechanism that knows the status of each peer (honest vs.
cheating) and thus can detect bad behavior with 100 percent
accuracy. The results for the ideal case are also shown in
Figure 18. Of course, the ideal behavior cannot be imple-
mented in practice, but it serves as a gold-standard yardstick
for our methods. We can see that, for most of the metrics, our
TrustJXP method is fairly close to the ideal case in terms of
detecting and compensating malicious peers.

7.5 JXP in P2P Search

The JXP algorithm has been integrated into the Minerva sys-
tem, a prototype platform for P2P Web search under de-
velopment in our institute [10,8]. Each Minerva peer is a
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Fig. 15 Histograms and rank divergence with Increased-Scores Attack

full-fledged search engine with its own crawler, indexer, and
query processor. Peers are autonomous in compiling their
own content using a focused Web crawler. A Web query is-
sued by a peer is first executed locally on the peer’s own
content, and then possibly routed to a small number of re-
mote peers for additional results.

To demonstrate the viability and utility of JXP within
the Minerva testbed, we performed a simple and preliminary
experiment. Here we have used again our Web collection,
but in a different setup. We have created 40 peers out of the
10 category sets by splitting each set into 4 fragments. Each
of the 40 peers hosts 3 out of 4 fragments from the same
topic, thus forming high overlap among same-topic peers. In
total there were 250,760 documents and 3,123,993 links.

Then we ran 15 queries that are typical for popular Web
search requests [13], using the query routing mechanism of
Minerva. The merged results were ranked in two ways: 1) by
a standard IR model based on term frequency (tf) and inverse
document frequency (idf), and 2) by a weighted sum of the
tf*idf score and the JXP score (with weight 0.6 of the first
component and weight 0.4 of the second component). The
queries were taken from [13] and have been intensively used
in prior literature on link analysis. We manually assessed the
relevance of the top-10 results under the two different rank-
ings. Given the small size of the collection, we considered
pages with links to relevant pages not reached by the crawler
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Fig. 16 Histograms and rank divergence with Permuted-Scores Attack

also as relevant pages. The results for precision at top-10 are
given in Table 2. The best results are shown in boldface. On
average, the standard tf*idf ranking achieved a precision of
40%, whereas the combined tf*idf/JXP ranking was able to
increase precision to 57%.

Table 2 Precision at top-10 for the Web Collection

Query tf*idf (0.6 tf*idf + 0.4 JXP)
affirmative action 40% 40%
amusement parks 60% 60%

armstrong 20% 80%
basketball 20% 60%

blues 20% 20%
censorship 30% 20%

cheese 40% 60%
iraq war 50% 30%
jordan 40% 40%

moon landing 90% 70%
movies 30% 100%
roswell 30% 70%

search engines 20% 60%
shakespeare 60% 80%
table tennis 50% 70%

Average 40% 57%
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dom forms of attack

8 Conclusions

This paper has presented the JXP and TrustJXP methods for
robust and efficient computation of approximate PageRank
scores in a fully decentralized manner that blends well with
P2P networks where peers are autonomous and the local data
collections of peers may overlap. Our methods are versatile
and could be easily adapted to computer other kinds of au-
thority and trust measures that are based on Eigenvectors in
some form of social network. A salient property of JXP is
its scalability: regardless of how large the network becomes,
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Fig. 18 Impact of Malicious Peers with TrustJXP Method.

the storage and computational costs per peer are limited by
the (order of the) resource commitments that the peer has
made for hosting its local data collection and graph fragment
anyway. Also, the messaging costs for peer meetings are
very small. JXP scores provably converge to global PageR-
ank values. The convergence speed depends on the network
size, but we have developed smart peer-meeting strategies
that accelerate convergence as demonstrated in our experi-
ments. Finally, for robustness to peers that may cheat when
exchanging information in a peer meeting, our TrustJXP ex-
tensions provide effective means to combat various forms of
misbehavior.

We presented the JXP algorithm for dynamically com-
puting authority scores of pages distributed in a P2P net-
work. It runs at every peer, and works by combining locally
computed PR scores with meetings among the peers in the
network. Through experiments as well as theoretical argu-
ments we showed that the JXP scores converge to the true PR
scores that one would obtain by a centralized computation.
We also presented a discussion, complemented by experi-
ments results, of optimizations for the algorithm regarding
the graph merging procedure and the strategy for selecting a
peer for the next meeting. The network bandwidth consump-
tion was also addressed in this work, where we showed that
the size of the messages exchanged by the peers is small. In
addition, we showed the viability and utility of the algorithm
in a P2P search engine, where the result ranking given by the
Minerva system was improved by integrating the JXP scores
into the score function.

Our experiments, with two different datasets and sys-
tematic variation of setups, have confirmed the anticipated
properties of JXP: convergence to global PR values and low
computational costs. They also showed that the various op-
timizations that were developed in Section 4 pay off by ac-
celerating convergence and reducing networking as well as

local processing costs. Despite the relatively small scaleof
our experiments (caused by limitations of our experimen-
tal machinery), we are very confident that, by the design of
our methods and their salient properties, JXP will exhibit
very good scalability in real-life large-scale environments as
well. We are working on setting up larger-scale experiments
in our lab and also with external collaboration partners over
wide-area Internet connections. The experimental resultsfor
TrustJXP in the presence of dishonest peers are preliminary
at this point but very encouraging. We can effectively detect
and counter a certain degree of cheating, under several at-
tacker models. But we surely realize also the limitations of
the approach so far: if the fraction of misbehaving peers be-
comes excessive, no countermeasure whatsoever will be able
to compensate the adverse effects of bad peers. Similarly,
our attacker models themselves are limited at this point, and
we will strive for a better, principled understanding of the
ways that peers can attempt to cheat and manipulate others
in such kinds of Web and social graph structures embedded
in P2P networks.

For our future work, in addition to deeper studies of mis-
behavior and further improvement and extension of TrustJXP,
we plan to explore how JXP performs in scenarios with very
high dynamics. This includes both data and network dynam-
ics. The global Web graph evolves at a high rate while we are
carrying out P2P computations of the JXP style. The chal-
lenge here is twofold: on one hand, we want capture recent
trends in this process and derive global authority measures
that are as fresh as possible; on the other hand, we need to
make sure that we are not misled by a moving target and our
result are not distorted by the fast evolution of the underlying
data. As for network dynamics, the main problem to tackle
is the so-called churn phenomenon: peers join and leave the
network at a high rate and without giving notice. We want to
safeguard JXP against these rapid and unpredictable forms
of variability.
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