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ABSTRACT

We introduce a unified graph representation of the Web,
which includes both structural and usage information. We
model this graph using a simple union of the Web’s hyperlink
and click graphs. The hyperlink graph expresses link struc-
ture among Web pages, while the click graph is a bipartite
graph of queries and documents denoting users’ searching
behavior extracted from a search engine’s query log.

Our most important motivation is to model in a unified
way the two main activities of users on the Web: searching
and browsing, and at the same time to analyze the effects of
random walks on this new graph. The intuition behind this
task is to measure how the combination of link structure and
usage data provide additional information to that contained
in these structures independently.

Our experimental results show that both hyperlink and
click graphs have strengths and weaknesses when it comes
to using their stationary distribution scores for ranking Web
pages. Furthermore, our evaluation indicates that the uni-
fied graph always generates consistent and robust scores that
follow closely the best result obtained from either individual
graph, even when applied to “noisy” data. It is our belief
that the unified Web graph has several useful properties for
improving current Web document ranking, as well as for
generating new rankings of its own. In particular station-
ary distribution scores derived from the random walks on
the combined graph can be used as an indicator of whether
structural or usage data are more reliable in different situa-
tions.

1. INTRODUCTION

In recent years, significant amount of research has been
devoted to studying the Web graph (which we refer to as hy-
perlink graph to avoid ambiguity) and the click graph. The
hyperlink graph is the directed graph among Web pages in
which edges represent hyperlinks. The click graph is a view
of the information contained in query logs, i.e., a bipartite
graph between queries and Web pages, in which edges con-
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nect a query with the documents that were clicked by users
as a result.

At an intuitive level, these two graphs capture two of
the most common tasks of users on the Web: browsing and
searching. A user who browses the Web essentially follows
edges on the hyperlink graph, while a user who searches and
consequently clicks on the result pages, is following edges on
the click graph. Searching and browsing together are equiv-
alent to the two prototypical actions of information seeking
and exploration.

The edges of these two graphs can capture certain seman-
tic relations between the objects they represent. An ex-
ample of such a relation is similarity: two pages connected
together by a hyperlink, or a query and a page connected
together by a click, are more likely to be similar than two
non-connected objects [7]. Another presumed semantic re-
lation is authority endorsement: a hyperlink from a page u
to a page v, or a click from a query q to the page v, can
both be viewed as implicit “votes” for page v [14]. These
hypotheses provide a foundation for the research of several
Web information retrieval problems, for instance clustering
of Web pages, queries and users, on-line community dis-
covery. Similarity search exploits the similarity hypotheses,
while ranking leverages the authority-endorsement theories.

Unfortunately both the hyperlink graph and the click graph
have certain disadvantages. For example, Google’s PageR-
ank [4] uses links in the hyperlink graph to compute im-
portance scores for Web pages. As a result substantial ad-
versarial effort has been put into artificially increasing the
PageRank score of Web pages. This adversarial effort takes
the form of spam pages or link farms [10, 9].

Similarly, the click graph has its own disadvantages. One
of those disadvantages is its sparsity: a page that is clicked
for a certain query must first appear in the list of results
for that query. This may not be trivial considering the vast
number of pages available for each query. Also, there is an
issue of an inherent bias in any rankings produced by this
graph, favoring already highly ranked Web pages. Another
related problem is its large dependency on textual match-
ing: typically search engines emphasize precision at the ex-
pense of recall, and display only results which match exactly
all the query terms, causing many relevant pages not to be
connected with queries if they are not exact matches. Fur-
thermore, the click graph is also prone to spam, but in this
case click spam which aims towards taking advantage of us-
age mining algorithms to improve search ranking.



Contributions of this work. In this paper we propose
a new type hybrid Web graph, which combines the existing
hyperlink and the click graphs, and we apply Web-mining
and link-analysis algorithms to it. This new graph, which
we call the hyperlink-click graph, is a simple graph union:
it has two types of nodes, pages and queries, with directed
edges between pages according to the hyperlink graph, and
undirected edges between queries and pages according to the
click graph.

The union of these two graphs combines the traditional
hyperlink graph, based on connectivity structure, and the
click graph, based on search engine usage information. The
purpose of this graph is to extend the traditional hyperlink
graph into a graph which reflects more accurately users’ nat-
ural behavior in the Web.

In particular we define and study random walks on the
unified graph. We show that ranking according to the scores
obtained from the hyperlink-click graph is similar to ranking
using the score of the non-combined graph with the highest
performance. The unified graph compensates where either
the hyperlink or click graph execute poorly, being overall
more robust and fail-safe. It is important to note that in
modern Web-search engines, link analysis scores in the style
of PageRank might be only small components of the overall
ranking function. Nevertheless, we compare directly to those
scores in order to isolate the effect of the hyperlink-click
graph.

Combining usage and content information in one structure
can improve the quality of many Web-mining algorithms.
From our point of view, the two graph structures are com-
plementary and each of them can be used to alleviate the
shortcomings of the other. For example, using clicks to in-
clude user feedback on the Web graph improves its resistance
against link-spam. On the other hand, by considering hy-
perlinks and browsing patterns we increase the density and
connectivity of the click graph, and we can account for pages
that users might visit after issuing particular queries.

Applications of the hyperlink-click graph. There are
several Web-mining tasks in which the hyperlink-click graph
can be used:

• Ranking of documents. A random walk on the
hyperlink-click graph can be used to obtain importance
scores for documents, which can be used to enhance
document ranking. This particular application is in
the focus of this paper.

• Query ranking and query recommendation. As
a by-product of the random walk on the hyperlink-
click graph, importance scores are obtained not only
for documents but also for queries. Such query scores
can be used for query recommendation: given a query,
we can use the graph to find other similar queries, and
then use the importance scores to rank those queries
and provide alternative query recommendations to the
user.

• Similarity search. There have been many notions of
distances among documents and among queries, which
have been based on the topology of the hyperlink graph
(e.g. SimRank [11]) and the click graph (e.g. [5]). Such
distance functions provide building boxes for designing
meaningful similarity-search algorithms. We believe
that refining such graph-based distance measures for

the hyperlink-click graph can lead to better notions
of similarity, since the hyperlink-click graph provides
richer information about the objects that it relates.
These similarity metrics can be used to find communi-
ties on the Web.

• Spam detection. Link-based features extracted from
the hyperlink graph, can be used to improve content-
based spam detection algorithms [2]. It is reasonable
to hypothesize that link features extracted from the
hyperlink-click graph can be useful to further improve
spam detection.

We plan to investigate some of these applications in future
work. The main focus of this paper is the first application:
enhancing the ranking of Web documents.

Roadmap. The rest of the paper is organized as follows.
In Section 2 we present the related work. In Section 3 we in-
troduce our notation and provide a formal description of the
graphs used in this paper. Section 4 discusses the random
walk model, which is mainly used for ranking. In Section 5
we discuss our experimental results, and finally, in Section 6
summarizes our results and conclusions.

2. RELATED WORK

The Web is an extremely rich and highly interconnected
source of information, which makes Web mining a very ac-
tive research field. Given the space limitations, our coverage
of the topic is by no means complete.

In general, the information found on the Web can be ana-
lyzed from three main points of view associated to the pre-
dominant types of data found in it [18].

Content: The information that the Web documents were
designed to convey. This data consists mainly of text
and multimedia.

Structure: The description of the organization of the con-
tent within the Web. This includes mainly the hyper-
link structure connecting documents and how they are
organized in logical structures such as Web sites.

Usage: This data describes the history of usage of a Web
site or search engine. This includes click through infor-
mation, as well as queries submitted by users to search
engines. This data is stored in the Web server’s access
logs, as well as in logs for specific applications.

There are several models for representing the information
on the Web. The most popular view is the one based on
structure. This approach sees the Web as a graph in which
documents are nodes that are connected to each other when
there is at least one hyperlink from one document to the
other. This graph structure has been exploited by link-
based ranking algorithms such as [4] and [12]. Both methods
rank pages according to their importance and authority, es-
timated by analyzing the endorsements or links from other
documents.

In the work presented in [1] there is an overview of many
other possible graph-based representations based on the con-
tent and usage data found on the Web. The focus is on the
analysis of queries from search engines and their semantic
relations, as well as their relations given by the clicks on com-
mon documents. Relations between queries can be inferred



from common keywords or common clicked documents. In
a similar way, relations between documents can be found by
looking at shared links or words. The incorporation of docu-
ment contents into these types of graphs is introduced from
the words in queries, their selected documents, and also by
the relations induced among documents with similar words.

With respect to usage data, a common model for query
logs from search engines is in the form of a bipartite undi-
rected graph. This graph includes two types of nodes: queries
and documents. Links between the two types of nodes are
generated by user clicks from queries to documents in the
process of selecting a search result. This type of representa-
tion was presented in [3] and used for agglomerative cluster-
ing to find related queries and documents. Later, this view
was expanded in [5] where weights were added to the undi-
rected edges, based on the number of clicks from the query to
a document. This graph is referred to as click graph. They
study the effect of forward and backward random walks on
this model for document ranking. They discuss that queries
should be considered as soft relevance judgments, and that
query logs give noisy and sparse data. The work of [5] sug-
gest that an effective method is a backward random walk.

On the other hand, the notion of unification of different
Web data sources is not a new one. In [19] a framework is
proposed for link analysis. This framework allows to model
inter-type and intra-type links between any number of dif-
ferent Web objects. They discuss that any link-based model
can be studied within their framework. In particular they
apply this to extend the HITS algorithm by incorporating
users browsing patterns.

Noise and malicious manipulation of Web content affect
both the click graph and hyperlink graphs. The most typical
type of manipulation is link spam on the hyperlink graph [10,
9]. In this approach artificial links are created to induce
higher link-based ranks on documents. In a similar way, click
graph manipulation can be produced from artificial clicks
on search engine results [16, 9]. The aim of this attack is
to manipulate learned ranking functions that are based on
click through information. Another type of noise that can
be found in click through data is the bias of clicks due to
the position of the search result. This bias has been studied
and modeled, e.g. by [8, 6].

Another perspective on query logs is to avoid considering
queries individually, but use them as sequences of actions.
This is explored in [17] and serves a dual purpose: it reduces
the noise due to single queries, and it allows the connection
of different actions of users over time.

3. WEB GRAPHS

In this section we describe three types of Web graphs: the
hyperlink graph, the click graph, and the hyperlink-click
graph. We introduce the notation that is used in the paper,
and describe the random walks that are performed over the
graphs.

The hyperlink graph. Given a set of N Web documents
D we consider the hyperlink graph GH = (D, H) as a di-
rected graph, where there is an edge (u, v) ∈ H if and only
if document u has a hyperlink to document v, for u, v ∈ D.

For a document u ∈ D, the set of in-neighbors of u (the
documents that point to u) and the set of out-neighbors of
u (the documents that are pointed to by u) are denoted by
NIN(u) and NOUT(u), respectively. That is, NIN(u) = {v ∈

D | (v, u) ∈ H} and NOUT(u) = {v ∈ D | (u, v) ∈ H}. For
u ∈ D, dIN(u) = |NIN(u)| is the in-degree of document u,
and dOUT(u) = |NOUT(u)| is its out-degree.

The click graph. Let Q = {q1, . . . , qM} be the set of M
unique queries submitted to a search engine during a specific
period of time. In practice, in order to construct the set of
unique queries we assume some simple normalization, such
as normalizing for space, letter case, and ordering of the
query terms. For a query q ∈ Q we denote by f(q) the
frequency of the query q, that is, how many times the query
was submitted in the search engine.

In a large-scale search engine query log, in addition to
the information about which queries have been submitted,
there is information about which documents are clicked by
the users who submit those queries. Let D = {d1, . . . , dN}
be the set of N Web documents clicked for those queries.

The click graph GC = (Q∪D, C) is an undirected bipartite
graph that involves the set of queries Q, the set of documents
D, and a set of edges C. For q ∈ Q and d ∈ D, the pair
(q, d) is an edge of C if and only if there is a user who clicked
on document d after submitting the query q. The obvious
prerequisite is that the document d is in the set of results
computed by the search engine for the query q. To each
edge (q, d) ∈ C we associate a numeric weight c(q, d) that
measures the number of times the document d was clicked
when shown in response to the query q.

As before, we define N(q) = {a | (q, a) ∈ C} the set of
neighboring documents of a query q ∈ Q, and N(a) = {q |
(q, a) ∈ C} the set of neighboring queries of a document
a ∈ D. We then define the weighted degree of a query q ∈ Q
as d(q) =

P

a∈N(q) c(q, a), and similarly, the weighted degree

of a document a ∈ D as d(a) =
P

q∈N(a) c(q, a).

The hyperlink-click graph. Quite simply, the hyperlink-
click graph GHC can be seen as the union of the hyperlink
graph and the click graph. There is a directed edge of weight
1 between documents u and v if there is a hyperlink from
u to v, and there is an undirected weighted edge between
query q and document d if there are clicks from q to d, and
the weight of the edge is equal to the number of clicks c(q, d).

4. RANDOM WALKS ON WEB GRAPHS

Given a graph G = (V, E) a random walk on G is a process
that starts at a node v0 ∈ V and proceeds in discrete steps
by selecting randomly a node of the neighbor set of the node
at the current step. A random walk on a graph of N nodes
can be fully described by an N × N matrix P of transition
probabilities. The i-th row and the i-th column of P cor-
respond both to the i-th node of the graph, i = 1, . . . , N .
The Pij entry of P is the probability that the next node
will be the node j given that the current node is the node i.
Thus, all rows of P sum to 1, and P is called row-stochastic
matrix.

Under certain conditions (irreducibility, finiteness, and
aperiodicity, see [15] for definitions and more details) a ran-
dom walk is characterized by a steady-state behavior, which
is known as the stationary distribution of the random walk.
Formally, the stationary distribution is described by an N-
dimensional vector π that satisfies the equation πP = π.
Alternatively, the i-th coordinate πi of the stationary-distri-
bution vector π measures the frequency in which the i-th
node of the graph is visited during the random walk, and



thus, it has been used as an intuitive measure of the impor-
tance of each node in the graph.

Next we will consider random walks in the three different
graphs we have introduced: the hyperlink graph, the click
graph, and the hyperlink-click graph. We will denote the
stationary distributions in those three graphs by πH, πC,
and πHC, respectively. We will refer to the values of the
stationary distribution vectors as scores.

Random walk on the hyperlink graph. The random
walk on the hyperlink graph corresponds to surfing the Web
by following hyperlinks at random from the current Web
page. The concept has been popularized by the seminal pa-
per of Brin and Page [4], and its application to the Google
search engine. The stationary distribution is also known as
the PageRank vector. In the PageRank model, a step of fol-
lowing a random hyperlink is performed with probability α,
while the walk “jumps” (“teleports” or “resets”) to a random
page with probability 1 − α. Additionally, special care is
taken when reaching a dangling node, a node with no out-
going edges. A common assumption is that upon reaching
to a dangling node the random walk continues by selecting
a target node uniformly at random. Consequently, if AH is
the adjacency matrix of the Web graph GH, define NH to
be the normalized version AH so that all rows sum to 1. As-
sume that NH is defined to take care of the dangling nodes,
so that if a row of AH has all 0s, then the corresponding
row of NH has all values equal to 1/N . Finally, let 1H be a
matrix that has the value 1/N in all of its entries. Then the
transition-probability matrix PH of the random walk on the
Web graph is given by PH = αNH + (1 − α)1H.

In addition to yielding a better model of surfing the Web
graph, performing the random jumps with probability (1 −
α) 6= 0 ensures the sufficient conditions for the stationary
distribution to be defined.

Random walk on the click graph. Random walk on
the click graph is similar, except for the fact that the click
graph is bipartite and undirected. Being bipartite creates
periodicity in the random walk, while being undirected has
the consequence that the stationary distribution is propor-
tional to the degree of each node. However, assuming that
we also perform random jumps with probability (1 − α),
then the random walk is aperiodic and irreducible (every
node can be reached from every other node), and also the
stationary distribution at each node is not a direct function
of its degree.

The formalization of the random walk on the click graph
is as follows. Let AC be an M × N matrix, whose M rows
correspond to the queries of Q and the N columns corre-
spond to the documents of D, and whose (q, d) entry has
value c(q, d), the number of clicks between query q ∈ Q and
document d ∈ D. Let A′

C be an (M +N)× (M +N) matrix
defined by

A′

C =

„

AC 0
0 AT

C

«

,

and let NC be the row-stochastic version of A′

C. Here again
we assume that NC is defined to take care of the dangling
nodes, so that if a row of AC has all 0s, then the correspond-
ing row of NC has all values equal to 1/(M + N). Finally,
let 1C be an (M + N) × (M + N) matrix that has value
1/(M +N) in all its entries. Then the transition-probability
matrix that describes the random walk on the click graph is
PC = αNC + (1 − α)1C.

Note that in [5] a backward random walk is used, while
we consider instead a forward random walk.

Random walk on the hyperlink-click graph. Using
the notation that we introduced in the previous paragraphs,
the random walk on the hyperlink-click graph is defined as
follows: First overwrite AH to be an (M + N) × (M + N)
matrix, including also the M queries and assuming that all
rows that correspond to queries are 0s. Then let NH be
the row-stochastic version of AH, normalizing for dangling
nodes—note that all newly introduced queries correspond
to dangling nodes—while let NC be as before. Finally, let
1 = 1C.

For combining the graphs introduce a querying probability
β, which determines the rate at which a user switches be-
tween querying a surfing behavior. The transition-probability
matrix for the random walk on the hyperlink-click graph is
then given by

PHC = αβNC + α(1 − β)NH + (1 − α)1. (1)

Let us also describe at a high-level the random walk defined
by the above equation. First, with probability (1 − α) the
walk goes to a random query or to a random document.
With probability α, the walk follows a link in the hyperlink-
click graph. The exact action depends on whether the cur-
rent state is a document or a query. If the current state is
a document u, then with probability β the next state is a
query q for which there are clicks to u, while with probabil-
ity 1−β the next state is a document v pointed by u. If the
current state is a query, then with probability β the next
state is document for which there are clicks from the query,
while with probability 1 − β the next state is any random
document.

For our experiments, while we investigate the effects of
the value of the parameter β to the results, we fix the value
of α to be 0.85, since it is a value widely used for PageRank
computation.

5. EXPERIMENTAL EVALUATION

In this section we present the experiments performed in
order to validate the utility of the scores produced by ran-
dom walks on the hyperlink-click graph. We compare these
scores to those generated by the hyperlink and click graphs
independently. The objective of this section is to discover
new information for improving the ranking of Web docu-
ments.

For the comparison of the different random walk scores, we
focus on two task in which a good ranking method should
perform well. These tasks are: ranking high-quality doc-
uments and ranking pairs of documents. The evaluation is
centered on analyzing the dissimilarities among the different
models.

We begin by describing the datasets used.

5.1 Dataset

As a data source we use an in-house query log. Due to
the enormous size of the Web, we use only a small sample
of documents and queries. We thus use only partial graphs
instead of the full graphs.

We create the graph data by using the query log as the
starting point. First let us denote by DQL the set of all
documents contained the query log. We parse the query log
and we find all the documents that have 10 or more clicks.



Figure 1: Construction of our dataset.

There are about 9 000 such documents in our sample, and
we refer to them as seed documents DS.

We then use a Web crawl to find all documents that
point to and are pointed to by the seed documents. Let
DIN =

S

u∈DS
NIN(u) and DOUT =

S

u∈DS
NOUT(u) be the

sets of documents with outlinks to and inlinks from DS, re-
spectively, and let DALL = DS ∪ DIN ∪ DOUT be the set
of all documents encountered. The above expansion pro-
cess increases the number of total documents (documents in
DALL) to approximately 144 million.

It should be noted that documents gathered through this
expansion process might also exist in DQL. We then define
DC to be the documents in the intersection of DALL and
DQL, that is DC = DALL ∩ DQL.

Finally, the set of queries QC that we consider are the
queries that have at least one click in the set of documents
DC. In total, there are about 61 000 such queries. The
dataset construction described above is shown in Figure 1.
Given the above sets, we then define the three graphs we con-
sider, the hyperlink graph, the click graph, and the hyperlink-
click graph as follows:

Hyperlink graph: The nodes of the hyperlink graph GH

are all the documents in the set DALL. The edges are
all the induced hyperlinks between this set of docu-
ments. We also note here that, due to the popularity
of the documents in the seed set, the set DIN is con-
siderably larger than the set DOUT.

Click graph: The nodes of the click graph GC are the doc-
uments in DC and the queries in QC. The edges are
induced by the clicks in the query log, and the number
of clicks serve also as weights for the edges.

Hyperlink-click graph: The hyperlink-click graph GHC is
the union of the hyperlink graph GH and and click
graph GC. Thus the document set for the hyperlink-
click is again the set DALL. The weights on the edges
of GHC depend on the querying probability β, as in
Equation 1. We use 5 values of the parameter β (β =
{0.25, 0.50, 0.75, 0.85, 0.95}), and we denote the result-
ing graph by GHC(β).

The selected dataset reflects a consistent sample of the
Web graph, although highly popular documents are chosen
as a seed set, this is further expanded to include most of the
neighboring documents. This expansion allows to include

in the dataset an heterogeneous sample of documents which
are connected to the initial set.

5.2 Random-walk evaluation

As described in Section 5.1, our experimental datasets are
partial and they only represent a sample of the whole Web.
Hence, to make the obtained results comparable, we analyze
only the results for the documents contained in the intersec-
tion of the click, hyperlink and combined graphs (which we
refer to as DC). However, it is important to note that we
use all of the nodes in each graph to compute the random
walk results, and not only the ones contained in DC.

We compute πH, πC and πHC for the values of β =
{0.25, 0.50, 0.75, 0.85, 0.95}. It is important to take into ac-
count that even for very large values of β, random walks on
GHC are quite different from those on GC. This is due to the
high influence of GH on the combined graph and is observed
in throughout the evaluation.

Task: ranking high-quality documents

To compare the random walk results, we decided to focus
on high-quality Web documents and how they score within
the different models. The hypothesis we sustain is that it is
desirable for a good model to score high-quality documents
above other documents. To measure this, we use documents
from the dmoz document directory.1 Our working hypothe-
sis is that since dmoz is editorially maintained, on average,
documents in this directory are of higher quality than doc-
uments not in the directory. Consequently, we use DZ to
denote the set of documents in the evaluation set DC that
belong also in the dmoz directory. Following our working
hypothesis, we postulate that the graph that produces the
best ranking results is the graph that ranks documents in
DZ higher than the rest of the documents in DC.

To quantitatively measure the agreement of the rankings
produced from the different graphs with the dmoz directory,
we use two measures:

ΠZ: Our first measure is the normalized sum of the π scores
of DZ documents. This is,

ΠZ = (
X

d∈DZ

π(d))/(
X

d∈DC

π(d)).

The intuition of this measure is that we want a large
amount of probability mass of the stationary distribu-
tion of the random walk to be accumulated with doc-
uments in DZ. Thus the value of the measure should
be as high as possible.

ΓZ: The second measure we use is inspired by the Goodman-
Kruskal Gamma measure[13], which is a descriptive
rank-order correlation statistic, often used in psychol-
ogy. Given two rankings on a set of items, on which the
two rankings disagree on D pairs of items and agree in
A pairs, the Γ measure between the rankings is defined
to be Γ = (D −A)/(D + A). In our case, even though
membership in the dmoz category does not induce a
complete ranking, we can still consider a weak ranking
in which all documents in dmoz are ranked before all
documents that are not in dmoz, and the definition
of Γ can still be applied: we just do not include pairs
of documents that are either both in dmoz or none in

1http://dmoz.org



Algorithm 1 Micro-evaluation

1. define a set of queries Q ⊂ QC ∈ GC that have at least
1 edge to a document in DZ and 1 edge to a document
in DC − DZ.

(a) for each q ∈ Q find all the adjacent documents
Dq that belong to DC.

(b) compute ΠZ and ΓZ replacing DC with the docu-
ments in Dq and DZ with Dq ∩ DZ.

2. Compute the average values of ΠZ and ΓZ.

Table 1: Macro-evaluation results
ΠZ ΓZ

GC 0.275 0.643
GH 0.600 0.458

GHC(0.95) 0.597 0.558
GHC(0.85) 0.591 0.552
GHC(0.75) 0.587 0.551
GHC(0.50) 0.580 0.544
GHC(0.25) 0.574 0.540

Table 2: Micro-evaluation results
ΠZ ΓZ

GC 0.738 0.604
GH 0.664 0.273

GHC(0.95) 0.752 0.563
GHC(0.85) 0.749 0.546
GHC(0.75) 0.745 0.534
GHC(0.50) 0.738 0.501
GHC(0.25) 0.730 0.483

dmoz. The measure Γ takes values between −1 and 1,
where −1 means that the two rankings are completely
discordant, while 1 means that the two rankings are
concordant. Again the value of the measure should be
as high as possible.

We evaluate the proposed measures ΠZ and ΓZ in two
levels of granularity, which are are defined as follows:

Macro-evaluation: This evaluation intends to capture the
overall scores of high-quality documents for the com-
plete DC document set. The quality measures ΠZ and
ΓZ are computed considering all the documents in DC

and DZ.

Micro-evaluation: This evaluation is performed at query
level. This means that to compute ΠZ and ΓZ the
sets DC and DZ are reduced to only those documents
clicked from a particular query. This is repeated for
each query in QC that has at least one document in
dmoz and at least one document that is not in dmoz.
In the end the results of are averaged over the total
number of queries processed. Formally the procedure
for the micro-evaluation is defined in Algorithm 1.

The results obtained in the macro and micro evaluations
are shown in Table 1 and Table 2 respectively. The macro-
evaluation results show that for the ΠZ the best value is
obtained for GH and the worst for GC. On the other hand,
in the ΓZ the roles are reversed with GC being the overall

Figure 2: Classification interface.

graph with less inverted elements and GH the one with the
most number of inverted elements. The results of the GHC

follow closely the best performing scores with less than 0.003
difference for ΠZ and 0.085 difference for ΓZ.

The micro-evaluation results, in Table 2, shows that for
the ΠZ metric, GHC obtains the best value followed by GHC.
For the ΓZ metric GC is the best, and GH is the worst in
both ΠZ and ΓZ.

These metrics observe the performance of the random
walk scores using different perspectives. From our point
of view a good scoring method should perform well both
macro and micro level. The results obtained show that the
random walk scores on the GHC follow closely the best scores
generated by the non-combined graphs.

Task: ranking pairs of documents

In addition to evaluating our rankings using the measures ΠZ

and ΓZ, which are based on the assumption that documents
in dmoz are on average of high quality, we also perform a
user study.

We evaluated a set of triples of the form (q, d1, d2) where q
is a query with at least 10 clicks in total, d1 and d2 are two
distinct documents returned by the search engine for that
query. Also, we limited the evaluation to cases in which
the ordering of d1 and d2 was different according to at least
two scoring methods in { πH, πC, πHC }. The evaluation
interface is shown in Figure 2. Users where presented a
randomly selected triple and asked: “Is one of these pages
clearly better for the query q?”. They were also given the
option to say that the two documents were about the same,
or that they could not be compared.

A group of 13 human assessors participated in the eval-
uation. A total of 1, 710 assessments were collected, from
which 515 (32%) expressed preference for one of the two
documents. There were 82 cases in which more than one
evaluator assessed the same triple and expressed a preference
for one of the two documents. In those cases, the agreement
among the evaluators was 70%. Still, the assessment process
proved to be very difficult since many of the selected pairs
of documents have only a marginal difference in their scores.

The results of the user study are shown in Table 4, using
again the Γ statistic to measure the agreement between the
rankings of the algorithms and the rankings induced by the
human evaluators.



Table 3: Top 10 documents for 3 of the random walk scores
GH GC GHC(85)
www.mp3lyrics.org www.yahoo.com www.gmail.com
www.gratka.pl cams.com www.quizilla.com
www.pimpmyspacepages.com uk.yahoo.com www.gratka.pl
www.dpreview.com www.google.com www.ebay.com.my
www.mtv.com/. . . www.theaa.com/. . . www.veoh.com
www.ebay.com.my www.ebay.co.uk www.livejournal.com
www.veoh.com www.nationalrail.co.uk www.google.pl
www.xe.com www.cineworld.co.uk spaces.live.com
www.livevideo.com games.yahoo.com www.flixster.com
www.music.com www.streetmap.co.uk mail.yahoo.co.uk

Table 4: Γ of ranking functions with human prefer-
ences

Method Overall Average per query
πC 0.197 0.195
πHC 0.063 0.042
πH -0.122 -0.141

Table 5: Γ of ranking functions with human prefer-
ences for δ ≥ 4.5 · 10−7 (38% of unique pairs)

Method Overall Average per query
πHC 0.156 0.132
πC 0.111 0.124
πH -0.078 -0.082

Due to the marginal difference in scores between many
pairs of documents, we study the behavior of Γ for the pairs
of documents which have a greater difference between their
scores. For this we evaluate only with pairs of documents
(di, dj) for which all scoring methods have a minimum δ =
|π(di)−π(dj)|. This allows to evaluate pairs which are less
ambiguous to assess for humans. As a result we found that
for values of δ ≥ 4.5 · 10−7 the Γ values of πC and πHC

are reversed and that πHC produces the best performance
at this point (shown in Table 5).

If we continue to increase the minimum value of δ we
obtain the results shown in Figure 3.
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Figure 3: Behavior of Γ in the user study when re-
stricting the minimum allowed value of δ.

Introducing “variations” into the click-graph

The click graph, just as the hyperlink graph can be prone to
induced variations, which can affect the scores of the random
walk. For the hyperlink graph it is well know that typical
variations are produced by link-spam. In the case of the click
graph, undesirable modifications in the random walk scores
can be the consequence of different methods that increase
the number of clicks, such as click-spam. Other variations on
the click-through data can occur from sponsored placement
of search engine results, in general these do not represent a
practical problem, since in general they can be filtered from
a query log. Nevertheless we will study the effects of induced
variations by using clicks on sponsored results to simulate
click-spam.

Table 6: Macro-evaluation results
ΠZ ΓZ

GC 0.2151 0.7912
GH 0.5851 0.2103

GHC(0.95) 0.5584 0.6429

Table 7: Micro-evaluation results
ΠZ ΓZ

GHC(0.95) 0.5772 0.2361
GH 0.5713 -0.1495
GC 0.5356 0.1677

In the previous part of the evaluation sponsored clicks
were filtered from the GC and GHC. We repeat this evalua-
tion introducing sponsored click-through data into GC and
GHC. Tables 6 and 7 show the results of the high-quality
document evaluation with this variation. We can observe
that in the macro-evaluation the order prevails with respect
to the original results. On the other hand, in the micro-
evaluation GHC performs better for both metrics.

The user study was repeated with 5 judges, which did
1, 576 assessments in total, from which 588 (37%) expressed
a preference for one of the two documents. Unlike the results
of the user study without sponsored clicks, in this case users
agreed more with πH and less πC, i.e.: results were reversed.
Nevertheless, the results for πHC remained in the middle (see
Table 8).

Summary of the experimental evaluation

In Tables 9 and 10 we provide a concise summary of the
metrics and types of evaluations used to measure the quality



Table 9: Summary of the evaluation for the task of finding high-quality documents
metric macro micro

without click variations with click variation without click variations with click variations
ΓZ GC ≈ GHC > GH GC > GHC > GH GC ≈ GHC > GH GHC ≈ GC > GH

ΠZ GH ≈ GHC > GC GH ≈ GHC > GC GHC ≈ GC > GH GHC ≈ GH ≈ GC

Table 10: Summary of the evaluation for the task of ranking pairs of documents
metric without click variation with click variation

Γ GC > GHC > GH GH > GHC > GC

Γ(δ ≥ 4.5 · 10−7) GHC ≈ GC > GH –

Table 8: Γ of ranking functions with human prefer-
ences using click-through data with sponsored clicks

Method Overall Average per query
πH 0.098 0.088
πHC -0.091 -0.137
πC -0.244 -0.186

of the different random walk scores. The convention that we
use is that GA > GB means that the ranking generated using
the graph GA is better than the ranking generated using
the graph GB (according to our measures), while GA ≈ GB

means that the difference between the two rankings is less
than 0.1.

In Figures 4 and 5 we show a comparison of metrics ΓZ and
ΠZ with click variations and without variations. In this Fig-
ures we can observe that the values for GHC are always very
close or better than the best result from the non-combined
graphs. This result is independent on whether or not click
variations where induced into the data.

Overall the different tasks evaluated reflect consistency in
the results. The values obtained for the study performed
with dmoz documents are coherent for the variations in the
value of β, and furthermore, they agree with the results
obtained from the user evaluation. We consider this as an
indicator of the usefulness of the evaluation and its metrics.

6. CONCLUSIONS

In this paper we studied the effects of a random walk on
a unified Web graph. This Web graph combines both hy-
perlinks between documents and clicks from queries to doc-
uments, and was created to capture more completely users’
searching and browsing behavior in the Web.

Our main motivation for studying this unified graph is to
analyze the new information that it can provide. As a first
approach, we focus on the task of using this model to en-
hance Web document ranking. For this we used a number
of different evaluation metrics in order to assess the ranking
produced on tour graph with respect to rankings produced
by the hyperlink and click graphs. We evaluated by analyz-
ing useful tasks for ranking, such as, ranking high-quality
documents and also ranking pairs of documents. For the
later, we conducted a user study which provided consistent
results with the rest of the evaluation. On the other hand,
we also tested the tolerance of our model to click variations
or noisy data.

Our experimental evaluation shows that the scores gener-
ated by random walks on the combined Web graph have sev-
eral useful properties for document ranking. Overall these

scores produce good quality results which are very stable
and tolerant to noisy clickthrough data. Additionally, our
results show that the unified graph is always close to the best
performance of either the click or hyperlink graph. Further-
more the results on the combined graph never approximate
the lower bound according to any metric, while the non-
combined graphs do not generate good results in all cases.

It is our belief that these properties of the unified graph
are useful for improving current ranking techniques. Partly
as an indicator of how reliable link-based ranks and click-
based ranks are for different tasks. As well as an indepen-
dent indicator of document quality.

As part of future work we would like to analyze how to deal
with the inherent bias that exists in any ranking technique
based on usage mining. This is, that pages with already
high stationary distribution scores are presented to users
more often as a query result. Thus, high ranked pages tend
to be more clicked. In long term use, this could create a self-
reinforcing ranking. This is not an easy problem to solve and
it depends mainly on other underlying ranking techniques.
Therefore we recommend any click-based ranking as as a
complement to other independent ranking methods.

Also in the future we would like to analyze other Web
mining applications for the hyperlink-click graph, such as:
link and click spam detection and similarity search.

The code used for the weighted random walk described in
this paper is available at http://law.dsi.unimi.it/satellite-
software/
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