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Why use ML methods in criminal justice?

«Judge decisions are affected by extraneous factors

« Algorithms are not affected by cognitive bias

*There can be welfare gains: ML flight risk evaluation can
yield substantial reductions in crime rate (with no change
in jailing rate) or jailing rates (with no increase in crime
rates)




Why use ML methods in criminal justice?

« Machines can inherit human biases through biased data

e In many cases their outputs cannot be explained, so how
can we justify?

e “They” can be racist

e There is a need for “fair” ML T

ere’s software used across the country to predict future criminals. And it's biased
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Fairness in ML: the case of COMPAS

* ProPublica: COMPAS is unfair!
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Corbett-Davies et al., 2017
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Fairness in ML: the case of COMPAS

Impossibility proofs: When base rates differ (in Broward County 51% vs. 39%),
you cannot achieve calibration and equal FPR/FNR at the same time

Also: Broward County
e No single threshold equalizes both FPR and FNR
o Direct vs. indirect discrimination

— Black defendants

— White defendants

e Imposing any fairness criterion has a cost in terms of
public safety or defendants incarcerated

e Literature on fairML grows rapidly, but all based 0% 25% 50% 75%  100%
on US data Probability of reoffending

Corbett-Davies et al., 2017
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What we do

*Look at European example: SAVRY in Catalonia

 We evaluate SAVRY against ML methods in terms of
fairness and predictive performance

*We show some evidence that ML methods of risk
assessments introduce unfairness and that their use in
criminal justice should be fairness-aware
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SAVRY

« Structured Assessment of Violence Risk in Youth (SAVRY)
e Structures Professional Judgement

* Also used to assess the risk of (not only violent) crimes
upon release

e Used to inform decisions on interventions

e Sample: Catalonia, 4752 youths aged 12-18, 855 with
SAVRY, committed crime between 2002-2010, released in
2010, recidivism by 2015




SAVRY #= COMPAS

e Detailed and transparent risk assessment
e Based on 6 protective factors

e Based on 24 risk factors: Historical, Social/Contextual,
Individual

e We evaluate the sum of 24 risk factors (low, medium,
high) against ML methods




Base rates differ

Recidivated Not Recidivated Difference
Mean Std. Dev. Mean Std. Dev. Difl Std. Dev.
savry 020 (0.40) 0.17 (0.38) -0 03" ((LO1)
female 0.1 031) 02 (0.41) 0.1 (LY
loreign 044 (0.50) 032 (0.47) -0.12°*" (0L01)
national group
central/south 0.17 (038) 0.15 (0.35) -0.03"" (0.01)

american

EL 005 022) 005 (0.22) 0.0 10.01)

magribian 02 (0.40) 0.1 (0.30) -0.1"" (CLO}
age maincrime 1559 (1.07) 1592 (1.07) 033" (0.08)
2 prior 021 (0.40) 021 (0.41) 0.0 (0.01)
3+ prio: 0.10 (0.30) 009 (0.28) -0.01 ((.O1)
violent maincrime 052 (0.50) 054 (0.50) 002 (0.Q2)
action mediat+rep 028 (0.45) 033 (0.47) Q05" (0.01)
actionexecution 029 (0.45) 035 ((.48) 006" ((LO1)
actionduration 118.67 (19355 14105 (216040 2238""° (6.38)
N 1622 3130

Note: Authors' calculations.
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Performance
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Performance
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Performance
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Fairness

Error rate balance (Chouldechova 2017)
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Fairness

FNR Disparity

Error rate balance (Chouldechova 2017)
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Fairness

FNR Disparity

Error rate balance (Chouldechova 2017)
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Summary and Outline

e ML yields a more precise risk assessment
e When base rates differ, ML methods have to be fairness aware
e Use rich information:
o for a transparent mitigation of unfairness
o to adjust features that have a substantial effect on increasing
unfairness
o to refocus analysis away from tensions/tradeoffs towards better
targeted interventions
e Further Analysis on human-algorithm interaction: RisCanvi
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Thank you!

Any questions?

You can find me at songul.tolan@ec.europa.eu

Find HUMAINT at https://ec.europa.eu/jrc/communities/community/humaint
Find Carlos at http://chato.cl/
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